Abstract:
In one aspect thereof this invention provides a method to estimate pitch in an acoustic signal. The method includes initializing a function ƒt and a time t, where t=0, x′0=ƒ0(F0), x′0 is a pitch estimate at time zero and F0 is a frequency of the acoustic signal at time zero; determining at least one pitch estimate using the function x′t=ƒt(Ft) by an iterative process of creating ƒt+1(Ft+1) based at least partly on pitch estimates x′t, x′t−1, x′t−2, x′t−3, . . . , and functions ƒt(Ft), ƒt−1(Ft−1), ƒt−2(Ft−2), ƒt−3(Ft−3) . . . and incrementing t; and calculating at least one final pitch estimate. Embodiments of this invention can be applied to pitch extraction with various different input acoustic signal characteristics, such as just intonation, pitch shift in the frequency domain, and non-12-step-equal-temperament tuning.
Abstract translation:在其一个方面,本发明提供了估计声信号中的音调的方法。 该方法包括初始化函数f T t和时间t,其中t = 0,x'0 0 = f 0 0(F 1 / 0&lt; 0&gt;)是0时刻的音调估计,F 0是在0时刻的声信号的频率; 通过使用函数x'的方法来确定至少一个音调估计,该迭代过程产生f 至少部分地基于间距估计x't',t't + 1(F t t + 1),x't-1 < ,x'T-2,x',t-3,..., 。 。 ,和f(t-1),f t-1(F t-1),f (F-t-2),f t-3(F t-3)。 。 。 并增加t; 并计算至少一个最终间距估计。 本发明的实施例可以应用于具有各种不同输入声信号特征的音调提取,例如只是语调,频域中的音调偏移以及非12阶等等调谐。
Abstract:
A musical instrument and a method of operating it. An instrument and method which retunes and adjusts volumes in response to the chord being sustained and the way that chord is voiced. The instrument is capable of producing tones, the intervals between which are equal tempered intervals of a twelve note octave, and tones, the intervals between at least some of which are determined by identifying at least selected ones of the notes the instrument is being commanded to produce. The method includes identifying the at least selected ones of the notes the instrument is being commanded to produce, providing a map for mapping the identified notes to a chord type, identifying a note in that chord type, and substituting a frequency closer to a harmonic of the identified note for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.
Abstract:
An electronic musical instrument is provided of the type in which a musical tone signal is formed by executing computations according to a mathematical formula such as a frequency modulation formula. Tone formation of each of musical tone signals to be simultaneously formed is assigned to each time-division-multiplexed time channel which is cyclically repeated over cycles of a plurality of time slots. A computation for forming each single musical tone is divided into a plurality of sub-computations, and those subcomputations are executed respectively using a plurality of cycles of time slots of each single time channel. Thus tone formation according to a complex computation formula is realized. Parameters necessary for the computation are generated respectively for each time slot so that any computational formula is adopted as desired by selecting predetermined parameters for each time slot.
Abstract:
An electronic musical instrument comprises a note code producer for producing note codes respectively having n bits representing juxtaposed notes aligned by a semitone interval step. The note codes to be generated are selected from a binary code table consisting of successively aligned binary values corresponding to an order of alignment of the notes in a musical scale and the table omits either one of the largest and smallest values to be represented by the lowest m bits (n>m). A modified note code generator produces modified note codes by repetitively adding the lowest m bits of each note code to further lower order digits below the least significant bit of each note code, and a sound system generates musical tones having frequencies corresponding to the modified note codes.
Abstract:
An electronic musical instrument is of a waveshape memory read out type which includes a waveshape memory device for storing amplitude values at respective sampling points in one period of a new musical tone waveshape to be generated subsequent to a present musical tone waveshape stored in another waveshape memory device, first calculating means for calculating differences in amplitude values at respective sampling points stored in corresponding addresses of the two waveshape memory devices respectively; renewal rate control means for generating a waveshape renewal signal having a period corresponding to difference information produced by the first calculating means, and renewal means for effecting renewal of the memory content of said another waveshape memory device at a rate corresponding to the period of the waveshape renewal signal.
Abstract:
An electronic musical instrument capable of producing any desired combination of two tones of mutually different footage. According to the invention, such combination of tones can be produced from only two tone sources without providing tone sources of an equal number to a total number of footage to be coupled. In view of the fact that musical tone waveshape amplitudes of two coupled tones of different footage can be represented by a multiplication term of a sine wave content and a cosine wave content, these two waveshape contents are individually calculated and then combined to form amplitudes of a composite musical tone waveshape.
Abstract:
Methods and digital circuits providing frequency correction to frequency synthesizers are disclosed. An FLL digital circuit is provided that is configured to handle a reference frequency that is dynamic and ranges over a multi-decade range of frequencies. The FLL circuit includes a digital frequency iteration engine that allows for detection of disappearance of a reference frequency. When the digital frequency iteration engine detects that the reference frequency signal is not available, the oscillator generated frequency is not corrected, and the last value of the oscillator generated frequency is held until the reference frequency signal becomes available again. This FLL circuit is also preceded by a low-pass filter which is dynamically tuned to the frequency to which the FLL locks, eliminating harmonic components in the original signal which might otherwise cause errors in frequency estimation.
Abstract:
A method by an electronic device for controlling a frequency response of audio output includes: receiving an audio signal at the device; estimating a sound pressure level of the audio signal based on one or more attributes or settings of the electronic device and/or the audio signal; generating values of an adaptive loudness control curve along a range of frequencies, wherein the adaptive loudness control curve is generated based on a difference between values of an equal loudness curve at the estimated sound pressure level along and values of an equal loudness curve at a reference sound pressure level; filtering the audio signal using values of the adaptive loudness control curve; and controlling output of the filtered audio signal as an audio output having substantially the same loudness along the range of frequencies.
Abstract:
Fingerprints are bit strings extracted from a media signal (e.g. an audio or video clip) to identify said media signal. Typically, they are derived from a perceptual property of the signal, for example, the spectral energy distribution of an audio fragment or the luminance distribution of a video image. A method and arrangement for extracting a fingerprint is here disclosed which is robust with respect to shifts of the perceptual property. Such shifts occur, inter alia, when the fingerprint is derived from a logarithmically mapped spectral energy distribution of an audio signal and said audio signal is subjected to speed changes. According to the invention, the fingerprint is not derived from the perceptual property as such, but from its auto-correlation function.
Abstract:
A musical instrument and a method of operating it. An instrument and method which retunes and adjusts volumes in response to the chord being sustained and the way that chord is voiced. The instrument is capable of producing tones, the intervals between which are equal tempered intervals of a twelve note octave, and tones, the intervals between at least some of which are determined by identifying at least selected ones of the notes the instrument is being commanded to produce. The method includes identifying the at least selected ones of the notes the instrument is being commanded to produce, providing a map for mapping the identified notes to a chord type, identifying a note in that chord type, and substituting a frequency closer to a harmonic of the identified note for the frequency of at least one harmonic of at least one other note the instrument is being commanded to produce.