Abstract:
The invention is directed to determining a gain for an equalizer associated with an audio device. An exemplary method comprises determining a maximum audio output level allowed by an acoustic safety threshold; determining a setting of the equalizer; and adjusting a gain of the equalizer based on the setting and the maximum audio output level. The invention enables an audio device to simultaneously satisfy an acoustic safety threshold and deliver an optimum audio output level.
Abstract:
The invention is directed to determining a gain for an equalizer associated with an audio device. An exemplary method comprises determining a maximum audio output level allowed by an acoustic safety threshold; determining a setting of the equalizer; and adjusting a gain of the equalizer based on the setting and the maximum audio output level. The invention enables an audio device to simultaneously satisfy an acoustic safety threshold and deliver an optimum audio output level.
Abstract:
A method by an electronic device for controlling a frequency response of audio output includes: receiving an audio signal at the device; estimating a sound pressure level of the audio signal based on one or more attributes or settings of the electronic device and/or the audio signal; generating values of an adaptive loudness control curve along a range of frequencies, wherein the adaptive loudness control curve is generated based on a difference between values of an equal loudness curve at the estimated sound pressure level along and values of an equal loudness curve at a reference sound pressure level; filtering the audio signal using values of the adaptive loudness control curve; and controlling output of the filtered audio signal as an audio output having substantially the same loudness along the range of frequencies.
Abstract:
A method in a first electronic mobile device for adapting audio performance parameters is provided. The first electronic mobile device performs an audio interaction with a second electronic device. The first electronic mobile electronic device is associated with at least one earpiece comprising at least one speaker and at least one microphone. The method comprises detecting an acoustic echo between the at least one speaker and the at least one microphone, determining, based on the detected acoustic echo, position of the at least one earpiece in relation to a user of the first electronic mobile device, and adapting audio performance parameters, based on the detected position of the earpiece, whereby less echo during the audio interaction is achieved in the second electronic device.
Abstract:
A method by an electronic device for controlling a frequency response of audio output includes: receiving an audio signal at the device; estimating a sound pressure level of the audio signal based on one or more attributes or settings of the electronic device and/or the audio signal; generating values of an adaptive loudness control curve along a range of frequencies, wherein the adaptive loudness control curve is generated based on a difference between values of an equal loudness curve at the estimated sound pressure level along and values of an equal loudness curve at a reference sound pressure level; filtering the audio signal using values of the adaptive loudness control curve; and controlling output of the filtered audio signal as an audio output having substantially the same loudness along the range of frequencies.