Abstract:
A display apparatus is provided. The display apparatus includes a display panel on which a plurality of X-Y electrode pairs are sequentially arranged, the display panel including a plurality of X electrodes and a plurality of Y electrodes; a driving unit which applies a driving voltage to the X electrodes and the Y electrodes; and a control unit which controls the driving unit to apply the driving voltage to a first electrode group including a number of X-Y electrode pairs that are isolated from one another and then to a second electrode group including a number of X-Y electrode pairs that are arranged among the X-Y electrode pairs included in the first electrode group.
Abstract:
This invention provides a plasma tube array-type display device and a luminance correcting method realizing reduced variations in luminance values of a plasma tube array. A gradient of the luminance value in the longitudinal direction of one plasma tube is calculated on the basis of the obtained luminance value at a plurality of positions in the longitudinal direction of at least one plasma tube. A difference of the luminance value of each plasma tube obtained at the same relative position. On the basis of the gradient of the luminance value and the difference of the luminance value of each plasma tube at the same relative position, a correction luminance value in each discharge cell in the longitudinal direction of each of the plurality of plasma tubes is calculated.
Abstract:
The present invention provides a plasma display device that has light emission properties with short persistence where green light has a persistence time of 3.5 msec or less, that is excellent in luminance, luminance degradation resistance, and color tone, and that is suitable for, for example, a stereoscopic image display device. The present invention provides a plasma display device including a plasma display panel in which a pair of substrates at least whose front side is transparent are disposed to oppose each other so as to form a discharge space between the substrates, barrier ribs for dividing the discharge space into a plurality of discharge spaces are disposed on at least one substrate, electrode groups are disposed on the substrates so as to produce discharge in the discharge spaces divided with the barrier ribs, and a green phosphor layer that emits light by the discharge is provided, wherein the green phosphor layer includes a mixed phosphor containing a short persistence Mn2+-activated green phosphor with a 1/10 persistence time of more than 2 msec but less than 5 msec and either a Ce3+-activated green phosphor or an Eu2+-activated green phosphor that has a light emission peak in a wavelength range of not less than 490 nm and less than 560 nm.
Abstract:
In a plasma display device, one frame is divided into a plurality of subfields having respective luminance weights, and a first line load ratio is measured from a plurality of video signals corresponding to a first row electrode among a plurality of row electrodes during the respective subfields. A first output estimation weight of each subfield is set based on the first line load ratio of each subfield in the first row electrode. The plurality of video signals corresponding to the first row electrode are converted into a plurality of first subfield data based on the first output estimation weight, and a driving signal is applied to the first row electrode and the plurality of column electrodes according to the plurality of first subfield data.
Abstract:
A plasma display device including: a plasma display panel including a plurality of electrodes; a printed circuit board assembly (PBA) activating the plasma display panel (PDP); a chassis base, including: a first surface supporting the plasma display panel (PDP), and a second surface having the printed circuit board assembly (PBA); signal lines applying a voltage, a data signal, and a control signal to the electrodes are formed at the end of the plasma display panel (PDP); and an interface flexible printed circuit connecting the signal lines to the printed circuit board assembly (PBA), wherein at least one of the signal lines has a line width at a portion further from the interface flexible printed circuit (FPC) that is larger than a line width at a portion closer to the interface flexible printed circuit (FPC).
Abstract:
An integrated circuit (IC) device for controlling a plurality of electrodes in a plasma display device, and a plasma display device including one or more IC devices, are provided. The IC device includes a plurality of output parts coupled to the plurality of electrodes, first and second terminals coupled to end portions of the IC device, and at least one third terminal between the first and second terminals and to supply a predetermined voltage to the IC device.
Abstract:
There is provided a plasma display apparatus comprising a plasma display panel and a driver. The plasma display panel includes a first electrode and a second electrode. The driver alternately supplies a first sustain signal and a second sustain signal to the first electrode and the second electrode in a first subfield and supplies a third sustain signal and a fourth sustain signal that swing a positive polar voltage and a negative polar voltage in a second subfield to the first electrode and the second electrode.
Abstract:
A method, medium, and apparatus compensating for differences in the persistence of phosphors in a display panel. The method of compensating for differences in persistence of phosphors in a display panel, having two or more light-emitting elements with different response characteristics, may include compensating for the response time of a first light-emitting element that represents the longest response time, selecting data response time for a second light-emitting element, which is different from the longest response time, and compensating for the differences in the persistence of phosphors due to a difference between the response times of the first light-emitting element and the second light-emitting element by compensating for the selected video data based on the compensated video data for the first light-emitting element.
Abstract:
A plasma display panel is a pure linear display and does not provide a non-linear gamma behavior like a CRT so that an artificial gamma function has to be applied to the signal in digital form. This gamma function increases the quantization steps in the dark areas whereas the quantization steps will be reduced in the luminous areas. The basic idea is to apply an adaptive noise filtering after the gammatization process. The adaptive filtering is a specific filtering which is adapted to the gammatization quantization noise. In other words, the filtering will be maximum for dark areas and its efficacy will be automatically decreased when the luminance of the area is increasing.
Abstract:
A display driving apparatus includes: n level shift units shifting a voltage level of n pixel data; a step potential providing unit providing a step potential; a change judgment unit judging whether or not each of the n pixel data has changed from pixel data of an immediately previous cycle; a delay unit generating n timing signals changing with different timings; and a control unit performing control such that the display output terminal corresponding to the pixel data judged to have changed by the change judgment unit is provided with: the step potential provided by the step potential providing unit during a first time period included in each of the cycle; and a potential shifted by the corresponding level shift unit during a second time period that is different from each other and is based on a timing of change of the corresponding timing signal.