摘要:
The invention relates to a method and device for the continuous production of steel using metal charge material (8) that is preheated in an upper part of a melting vessel (2), is then melted in a lower part (9) of the melting vessel l(2) with fossil fuels (23) and the molten material (16) is continuously discharged into a treatment vessel (3) in which the desired steel quality is adjusted while gases (22) are introduced into the melting vessel (2) from the exterior to afterburn the melting exhaust gases (13). The aim of the invention is to improve the aforementioned afterburn step while at the same time reducing oxidation of the iron-containing charge materials. For this purpose, the process gases (13) are step-wise afterburned when ascending in the melting vessel (2) by introducing the afterburn gases (22) into the interior of the charge material column by way of an interior shaft (5) that projects into the material column and in whose walls (20) inlet openings (21) for the gases (22) are disposed and form afterburn planes (E1, E2) arranged one on top of the other. The invention also relates to a device for carrying out the inventive method.
摘要:
The invention relates to a method and device for the continuous production of steel using metal charge material (8) that is preheated in an upper part of a melting vessel (2), is then melted in a lower part (9) of the melting vessel l(2) with fossil fuels (23) and the molten material (16) is continuously discharged into a treatment vessel (3) in which the desired steel quality is adjusted while gases (22) are introduced into the melting vessel (2) from the exterior to afterburn the melting exhaust gases (13). The aim of the invention is to improve the aforementioned afterburn step while at the same time reducing oxidation of the iron-containing charge materials. For this purpose, the process gases (13) are step-wise afterburned when ascending in the melting vessel (2) by introducing the afterburn gases (22) into the interior of the charge material column by way of an interior shaft (5) that projects into the material column and in whose walls (20) inlet openings (21) for the gases (22) are disposed and form afterburn planes (E1, E2) arranged one on top of the other. The invention also relates to a device for carrying out the inventive method.
摘要:
Aluminum scrap having organic adhesions is processed to recover aluminum. A hearth of scrap chamber of a multi-chamber melting furnace is batchwise loaded with aluminum scrap where it is heated in low oxygen to convert the organic adhesions on the aluminum scrap into a pyrolysis gas. In a second pretreatment phase, the scrap chamber is heated to the auto-ignition temperature of the pyrolysis gas, wherein at least one air flow is provided in the scrap chamber to produce an ignitable substoichiometric pyrolysis gas/combustion air mixture which is reacted in the scrap chamber in a combustion process. The atmosphere from the scrap chamber is transferred to a post-combustion. A corresponding multi-chamber melting furnace is also provided.
摘要:
A recycling disposal system is provided, the system efficiently combining the respective devices of a shredder, a carbonization furnace, and a gasification furnace to provide a new system combining low-temperature asbestos detoxification processing technology with biomass processing and recycling technology, and capable of energy-self-sufficient processing when operated in a disaster area.
摘要:
In the production of reduced iron by agglomerating a mixed powder of an iron material and a reducing agent to form compacts like briquettes or pellets, and reducing the compacts in a high temperature atmosphere, when the temperature of reduced compacts is 900° C. or higher, the oxide content in the reduced compacts is set at 11% or more, and the basicity of the reduced compacts is set at 0.5 or higher.
摘要:
In the production of reduced iron by agglomerating a mixed powder of an iron material and a reducing agent to form compacts like briquettes or pellets, and reducing the compacts in a high temperature atmosphere, when the temperature of reduced compacts is 900null C. or higher, the oxide content in the reduced compacts is set at 11 % or more, and the basicity of the reduced compacts is set at 0.5 or higher.
摘要:
Metal scrap such as aluminum scrap can be economically processed so as to recover the metal in the scrap by concurrently passing the scrap through a rotary kiln together with a recycled stream of hot gas. The heated scrap is separated from the gas stream at the discharge end of the kiln and is fed to a melter used to recover the metal. The separated gas stream is burned in an appropriate burner or incinerator used to provide the recycled gas stream.
摘要:
A recycling disposal system is provided, the system efficiently combining the respective devices of a shredder, a carbonization furnace, and a gasification furnace to provide a new system combining low-temperature asbestos detoxification processing technology with biomass processing and recycling technology, and capable of energy-self-sufficient processing when operated in a disaster area.
摘要:
The invention relates to a device and a method for producing clinker from raw cement material. The raw cement material is preheated in a preheater, is precalcined in a calcining apparatus, is completely burned in a sintering furnace, and is finally cooled in a cooler. Tertiary air of the cooler is fed to the calcining apparatus while eliminated dust is thermally treated in a dust burning reactor with the aid of combustion air and fuel. At least some of the tertiary air is fed to the dust burning reactor as combustion air while the dust that is to be treated and the combustion air penetrate the dust burning reactor in the same direction of flow.
摘要:
A method for the continuous production of steel using metal charge material that is preheated in an upper part of a melting vessel, is then melted in a lower part of the melting vessel with fossil fuels and the molten material is continuously discharged into a treatment vessel in which the desired steel quality is adjusted while gases are introduced into the melting vessel from the exterior to afterburn the melting exhaust gases. The process gases are step-wise afterburned when ascending in the melting vessel by introducing the afterburn gases into the interior of the charge material column by way of an interior shaft that projects into the material column and in whose walls inlet openings for the gases are disposed and form afterburn planes arranged one on top of the other.