Abstract:
Methods and systems are provided for leveraging the pressure dependency of an oxygen sensor for estimating an engine ambient pressure. An intake or exhaust oxygen sensor is used for ambient pressure estimation by applying a reference voltage to the sensor while the engine is being pulled-down in a hybrid vehicle, and correcting an output of the sensor for dilution effects due to ambient humidity. The estimated ambient pressure is used to correct or confirm pressure estimated by other sources, such as other pressure sensors or a pressure model, as well as to tune the performance of the engine.
Abstract:
A system for correcting engine torque includes: a torque correction value generator generating a torque correction value for correcting output torque of an engine; a torque correction determination unit determining applicability of the generated torque correction value; and a torque applying unit determining a final engine output torque by applying the generated torque correction value to the output torque of the engine based on the determined applicability of the generated torque correction value.
Abstract:
Methods and systems are provided for determining an offset of a manifold pressure sensor. In one example, an engine method may include indicating degradation of the manifold pressure sensor based on a sensor offset, the sensor offset based on a manifold pressure measured at a first throttle angle, a barometric pressure at a second throttle angle, a reference manifold pressure at the first throttle angle and reference barometric pressure, and the reference barometric pressure. Further, the method may include adjusting an output of the manifold pressure sensor by the determined sensor offset.
Abstract:
Methods and systems for detecting barometric pressure (BP) changes based on tire pressure changes are disclosed. In one example approach, a method comprises adjusting an evaporative leak detection threshold based on a change in barometric pressure, where the change in barometric pressure is based on a tire pressure change.
Abstract:
Methods and systems for detecting barometric pressure (BP) changes based on tire pressure changes are disclosed. In one example approach, a method comprises adjusting an evaporative leak detection threshold based on a change in barometric pressure, where the change in barometric pressure is based on a tire pressure change.
Abstract:
An atmospheric pressure estimating apparatus which estimates an atmospheric pressure applied to a calculation of control parameters of an internal combustion engine, is provided. An estimated intake air control valve passing air flow rate is calculated based on the estimated atmospheric pressure, the detected intake pressure, and the detected intake air control valve opening. The estimated atmospheric pressure is updated so that the estimated intake air control valve passing air flow rate coincides with the detected intake air control valve passing air flow rate. The estimated intake air control valve passing air flow rate is calculated using the updated estimated atmospheric pressure. The update of the estimated atmospheric pressure and the calculation of the estimated control valve passing air flow rate are sequentially performed. Consequently, the estimated control valve passing air flow rate follows the intake air flow rate, and the estimated atmospheric pressure follows the atmospheric pressure.
Abstract:
A method of controlling a motor vehicle is disclosed. The method can be used to determine an ambient pressure value without the use of an ambient pressure sensor. The ambient pressure value can be used for controlling a set of fuel injectors. The method can include provisions for adjusting the ambient pressure value to correct for errors introduced by engine wear and other factors.
Abstract:
An engine air supply control method relating to a turbocharged engine including an intake manifold (20) which is disposed downstream of the compressor of the turbocharger (14) and an exhaust manifold (22) which is disposed upstream of the turbine of the turbocharger (14). The method includes determining the mass air flow supplying the engine and/or the pressure in the intake manifold (20) and the temperature in the exhaust manifold. The pressure in the exhaust manifold (22) is determined as a function of the pressure in the intake manifold (20), the engine speed, the temperatures in the cylinders (4) and in the exhaust manifold (22), the pressure in the intake manifold (20) being optionally determined from the mass air flow. Inversely, the pressure in the intake manifold.
Abstract:
Method of acquisition and processing of an intake pressure signal in an internal combustion engine without an intake manifold; the internal combustion engine having at least one cylinder that receives fresh air through an intake duct, which is controlled by a butterfly valve and is provided with a pressure sensor connected to an electronic control unit. The acquisition and processing method provides for the following steps: measuring, via the pressure sensor, the instantaneous induction pressure at a plurality of different crank angles distributed over an engine cycle; storing, during each engine cycle, the instantaneous induction pressures in a fast acquisition buffer of the electronic control unit; and determining, at the end of each engine cycle, the mean induction pressure in the engine cycle by calculating a mean of the instantaneous induction pressures previously stored in the fast acquisition buffer of the electronic control unit.
Abstract:
An engine controller of the present invention is comprised of: a determining section for determining a state where an engine is not driven; a braking torque obtaining section for obtaining a braking toque acting on the vehicle; a vehicle speed sensing section for sensing a vehicle speed; an atmospheric pressure obtaining section for obtaining an atmospheric pressure value when an engine is driven; a road gradient obtaining section for obtaining a road gradient on the basis of the braking torque and the vehicle speed when the determining section determines the state where the vehicle is not driven; an atmospheric pressure correcting section which calculates a vehicle vertical travel of a downhill on the basis of the road gradient and a travel distance derived from the vehicle speed when the vehicle has descended the downhill, and corrects the atmospheric pressure value on the basis of the vehicle vertical travel of the downhill.