摘要:
An anti-counterfeiting yarn includes a uniformly distributed up-conversion fluorescent material and a polymer, wherein the up-conversion fluorescent material comprises a maximum weight percent of about 1.8%. A method of preparing an anti-counterfeiting yarn includes mixing functional polymer chips containing up-conversion fluorescent material with polymer chips not containing up-conversion fluorescent material in a ratio such that the fluorescent material is uniformly distributed in the mixture, melting the mixture, extruding the melt into filaments, and producing anti-counterfeiting yarn through spinning and drawing the filaments.
摘要:
A filtration material comprising a blend of polypropylene and acrylic fibers of round, flat, dog bone, oval or kidney bean shape in any size from 0.08 to 3.3 Dtex. A preferred blend contains about 50 weight percent polypropylene fibers and about 50 weight percent acrylic fibers. The fibers can be blended ranging from 90:10 to 10:90 polypropylene to acrylic. The shape contains 25 weight percent round, flat, oval, dog bone and kidney bean shapes. The fiber blend contains 25 weight percent of at least one size between 0.08 and 3.3 Dtex. Electret fibers incorporated within these blends have 0.02 to 33 weight percent of a charge control agent. These fibers can be used in producing electret material by corona or triboelectric charging methods.
摘要:
A filtration material comprising a blend of polypropylene and acrylic fibers of round, flat, dog bone, oval or kidney bean shape in any size from 0.08 to 3.3 Dtex. A preferred blend contains about 50 weight percent polypropylene fibers and about 50 weight percent acrylic fibers. The fibers can be blended ranging from 90:10 to 10:90 polypropylene to acrylic. The shape contains 25 weight percent round, flat, oval, dog bone and kidney bean shapes. The fiber blend contains 25 weight percent of at least one size between 0.08 and 3.3 Dtex. Electret fibers incorporated within these blends have 0.02 to 33 weight percent of a charge control agent. These fibers can be used in producing electret material by corona or triboelectric charging methods.
摘要:
The invention relates to a regenerated cellulose fiber in the form of a solid viscose flat fiber having the following properties: The fiber consists of cellulose by more than 98%. The ratio of width B to thickness D of the fiber is 10:1 or higher. The fiber surface is essentially smooth. The fiber is essentially transparent. The fiber according to the invention is particularly suitable for the production of paper.
摘要:
A filtration material comprising a blend of polypropylene and acrylic fibers of round, flat, dog bone, oval or kidney bean shape in any size from 0.08 to 3.3 Dtex. A preferred blend contains about 50 weight percent polypropylene fibers and about 50 weight percent acrylic fibers. The fibers can be blended ranging from 90:10 to 10:90 polypropylene to acrylic. The shape contains 25 weight percent round, flat, oval, dog bone and kidney bean shapes. The fiber blend contains 25 weight percent of at least one size between 0.08 and 3.3 Dtex. Electret fibers incorporated within these blends have 0.02 to 33 weight percent of a charge control agent. These fibers can be used in producing electret material by corona or triboelectric charging methods.
摘要:
A filtration material comprising a blend of polypropylene and acrylic fibers of round, flat, dog bone, oval or kidney bean shape in any size from 0.08 to 3.3 Dtex. A preferred blend contains about 50 weight percent polypropylene fibers and about 50 weight percent acrylic fibers. The fibers can be blended ranging from 90:10 to 10:90 polypropylene to acrylic. The shape contains 25 weight percent round, flat, oval, dog bone and kidney bean shapes. The fiber blend contains 25 weight percent of at least one size between 0.08 and 3.3 Dtex. Electret fibers incorporated within these blends have 0.02 to 33 weight percent of a charge control agent. These fibers can be used in producing electret material by corona or triboelectric charging methods.
摘要:
A filtration material comprising a blend of polypropylene and acrylic fibers of round, flat, dog bone, oval or kidney bean shape in any size from 0.08 to 3.3 Dtex. A preferred blend contains about 50 weight percent polypropylene fibers and about 50 weight percent acrylic fibers. The fibers can be blended ranging from 90:10 to 10:90 polypropylene to acrylic. The shape contains 25 weight percent round, flat, oval, dog bone and kidney bean shapes. The fiber blend contains 25 weight percent of at least one size between 0.08 and 3.3 Dtex. Electret fibers incorporated within these blends have 0.02 to 33 weight percent of a charge control agent. These fibers can be used in producing electret material by corona or triboelectric charging methods.
摘要:
The present invention is directed towards a method for spinning anionically modified cellulose comprising the steps of: (a) preparing a suspension of the anionically modified cellulose in a continuous phase; (b) subjecting the suspension to high shear rate; (c) performing spinning by extruding the cellulose suspension through a spinneret into a spinbath comprising a cationic complexing agent, and (d) isolating the sun fibres from the spin bath; as well as fibres obtained based on the method of the invention and paper or board products derived from such fibres.
摘要:
Temperature adaptable textile fibers are provided in which phase-change or plastic crystalline materials are filled within hollow fibers or impregnated upon non-hollow fibers. The fibers are produced by applying solutions or melts of the phase-change or plastic crystalline materials to the fibers.
摘要:
A fabrication method for a water-absorbent filter includes obtaining a homogenized tragacanth suspension by dissolving tragacanth in a solvent, where the solvent may include distilled water, ethyl acetate, acetic acid, and formic acid, obtaining a support layer by coating a stainless steel mesh with a thin layer of a hydrophobic polymer, coating a stainless steel mesh with the thin layer of the hydrophobic polymer comprising electrospinning a hydrophobic polymer solution onto the stainless steel mesh, forming a tragacanth nanofibrous web on the support layer by electrospinning the homogenized tragacanth suspension onto the support layer, and cross-linking the tragacanth nanofibrous web by exposing the tragacanth nanofibrous web to a saturated vapor of a cross-linking agent.