MULTI-CONJUGATE OF SIRNA AND PREPARING METHOD THEREOF

    公开(公告)号:US20240150766A1

    公开(公告)日:2024-05-09

    申请号:US18509130

    申请日:2023-11-14

    申请人: KIP Co. Ltd.

    IPC分类号: C12N15/113 C12N15/11

    摘要: The present invention relates to a multi-conjugate of small interfering RNA (siRNA) and a preparing method of the same, more precisely a multi-conjugate of siRNA prepared by direct binding of double stranded sense/antisense siRNA monomers or indirect covalent bonding mediated by a cross-linking agent or a polymer, and a preparing method of the same. The preparing method of a siRNA multi-conjugate of the present invention is characterized by simple and efficient reaction and thereby the prepared siRNA multi-conjugate of the present invention has high molecular weight multiple times the conventional siRNA, so that it has high negative charge density, suggesting that it has excellent ionic interaction with a cationic gene carrier and high gene delivery efficiency.

    CIRCULAR BIFUNCTIONAL APTAMERS AND TRIFUNCTIONAL APTAMERS TARGETING Tau

    公开(公告)号:US20230159935A1

    公开(公告)日:2023-05-25

    申请号:US17797217

    申请日:2021-03-01

    IPC分类号: C12N15/115

    摘要: The lack of blood-brain barrier (BBB) penetrating ability has hindered the delivery of many therapeutic agents for tauopathy therapeutic treatment. A circular bifunctional aptamer reported here has been able to enhance the in vivo BBB penetration for improved therapy. The circular aptamer includes one transferrin receptor (TfR) aptamer to facilitate TfR-aptamer recognition-induced transcytosis across BBB endothelial cells, and one Tau protein aptamer selected to inhibit Tau phosphorylation and other tauopathy-related pathological events in the brain. This bispecific construct exhibits strong specificity towards Tau and enhanced plasma stability in comparison to linear Tau aptamer. In vivo administration of circular Tau-TfR aptamer results in a rapid uptake into relevant brain regions after crossing the BBB, such as hippocampus and cortex. A Y-shaped trispecific aptamer including one aptamer for L1CAM, one aptamer for Tau and one aptamer for TfR reported here has enhanced BBB and neuron cell membrane permeation. Bispecific and trispecific Tau aptamer coupled to a signaling moiety (such as dodecane tetraacetic acid (DOTA) or DOTA complexed to Gd+3) for neuroimaging, and bispecific or trispecific Tau aptamer coupled to protein aggregate binding moiety (such as methylene blue) for enhanced ability to disrupt tau aggregation are also contemplated in this invention.