Abstract:
A system for providing improved bulk liquid mixing and effective gas-liquid contacting for mass transfer of the gas to the liquid, especially a non-Newtonian liquid, the viscosity of which decreases when under shearing conditions (shear thinning), in an upright tank. A process, such as fermentation which produces commercial quantities of polysaccharides such as xanthan gum. may be carried out in the tank. An upright draft tube is mounted within the tank and has a lower end spaced from the tank bottom and an upper end spaced below the surface of the liquid in the tank. A plurality of mixing impellers in the draft tube are sufficiently close to each other to establish a field or pattern of agitation to cause shear thinning and upflow throughout the draft tube and which may produce turbulence at the liquid surface. A plurality of radially inwardly projecting. circumferentially spaced baffles extend from the draft tube and are proximate the mixing impellers to prevent swirling of the liquid within the draft tube. Gas may be sparged into the vessel in or adjacent to the lower end of the draft tube. A circulating co-current flow of gas and liquid, with intimate gas-liquid contact, is induced up through the draft tube and out the upper end of the draft tube so as to provide a high rate of mass transfer from the gas to the liquid. The flow including entrained gas turns down through the annular region between the tank wall and the draft tube for recirculation of the liquid and gas above the surface of the liquid, resulting in high gas holdup and gas-liquid contact in the downflow annular region and in the upflow draft tube region, without gas flooding of the impellers. The concentration of dissolved gas and the effectiveness of the system for gas-phase mass transfer is determined by reaeration of a test sample of the liquid. Additional surface aeration can be provided with a surface impeller having a plurality of blades with vertical portions and outwardly inclined portions, the vertical portions being inclined with respect to radial lines from the axis of rotation of the impeller.
Abstract:
A fermenter for the production of xanthan gum is provided with an upper helical impeller and a lower turbine impeller which are positioned therewithin, and an agitator shaft for driving these helical impeller and turbine impeller. The helical impeller consists of a pair of vertically spaced arms extending from the agitator shaft in opposite directions and arranged in twisted relationship, and at least one shearing paddle bridging these arms, and the turbine impeller consists of a rotating disc having at least one turbine blade attached thereto.
Abstract:
A fermenter for the production of xanthan gum is provided with an upper helical impeller and a lower turbine impeller which are positioned therewithin, and an agitator shaft for driving these helical impeller and turbine impeller. The helical impeller consists of a pair of vertically spaced arms extending from the agitator shaft in opposite directions and arranged in twisted relationship, and at least one shearing paddle bridging these arms, and the turbine impeller consists of a rotating disc having at least one turbine blade attached thereto.
Abstract:
The invention relates to a process for improving the quality of mixing of liquid especially viscous media in stirred tank reactors, wherein a change in direction of the medium set in motion is brought about at one point or at several points of the inner wall of the reactor at different levels, in a direction vertical to the angle of approaching flow (attack). The process is especially suitable for fermentation reactions.The invention moreover relates to a corresponding stirred tank reactor.
Abstract:
A fermentation apparatus is provided having a reactor vessel, baffle means, impellor means, and a telescopeable draft tube means which enables the upper portion of the draft tube means to be raised and lowered with respect to the lower portion of the draft tube means.
Abstract:
A continuous process for culturing a micro-organism in an aqueous nutrient medium under aerobic conditions in the presence of a liquefied hydrocarbon gas as a main carbon source which comprises adding fresh liquefied hydrocarbon gas to the culture medium, determining the concentration of dissolved liquefied hydrocarbon gas in the culture medium and controlling the addition of fresh liquefied hydrocarbon gas depending upon the detected concentration of said liquefied hydrocarbon gas in the culture medium, the supply and dissolution of the liquefied hydrocarbon gas being based on the rate of said gas consumed by the micro-organisms. Alternatively, the partial pressure of the liquefied hydrocarbon gas in the vent gas can be measured and used to control the rate of liquefied hydrocarbon gas supplied to the culture medium.
Abstract:
The present invention is a composting bioreactor system that continually receives biodegradable solid wastes, waste waters and exhaust gases, automatically recycles the biodegradable wastes into nutrients and heat energy, and automatically supplies the nutrients and heat into an integrated hydroponic or aquaponic system. This invention together with integrated food growing system may be installed onsite such as balconies, backyards and premises of restaurants and food factories etc. therefore may lead to zero mileage targets both for recycling wastes and for supplying foods. This invention integrates composting process and aquaponic technology together and may establish a closed-loop recirculation of both water and gases therefore upgrades aquaponics into compoponics. A compoponic system has both soil and soilless growing beds and mimics nature recirculating nutrients, carbon and energy among human being, animals, microorganisms and plants by way of photosynthesis, slow burning by cellular respiration and burning by combustion.
Abstract:
The present invention is a composting bioreactor system that can be continually fed with biodegradable solid wastes, waste waters and exhaust gases, that can automatically recycle the biodegradable wastes into liquid nutrients and heat energy, and that automatically supplies the nutritious liquid and heat into the integrated hydroponics system or aquaponics system. The invention together with the integrated food growing system can be installed onsite in places such as household balconies, household backyards and premises of restaurants and food factories etc. therefore can lead to zero mileage targets both for recycling the wastes and for growing the foods consumed in the same location. It can fully recover and reuse all the nutrients and heat energy from the treated wastes. It can also reach the target of nearly zero pollution to the environment during all processes. For better operational efficiency, an oblique cone agitator, a fish plow agitator and a vortex flower turbine are specially designed for the bioreactor system.