Abstract:
A substrate steel of the comprising from 0.01 to 0.60 wt. % of La, from 0.0 to 0.65 wt. % of Ce; from 0.06 to 1.8 wt. % of Nb up to 2.5 wt. % of one or more trace elements and carbon and silicon may be treated in an oxidizing atmosphere to product a coke resistant surface coating of MnCr2O4 having a thickness up to 5 microns.
Abstract:
A process for performing high temperature reactions includes introducing reactants into a reactor vessel, generating a high temperature within the reactor vessel, exposing a first portion of the reactants to the high temperature, and reacting the first portion of the reactants based on contact with the high temperature to produce one or more products. The high temperature is higher than a lower temperature of a wall of the reactor vessel, and a temperature gradient is generated between the high temperature and the lower temperature of the wall. A second portion of the reactants are not exposed to the high temperature, and the second portion of the reactants do not react.
Abstract:
An anti-coking surface having a thickness up to 15 microns comprising from 15 to 50 wt. % of MnCr2O4; from 15 to 25 wt. % of Cr0.23Mn0.08Ni0.69, from 10 to 30 wt. % of Cr1.3Fe0.7O3, from 12 to 20 wt. % of Cr2O3, from 4 to 20 wt. % of CuFe5O8, and less than 5 wt. % of one or more compounds chosen from FeO(OH), Cr+3O(OH), CrMn, Si and SO2 (either as silicon oxide or quartz) and less than 0.5 wt. % of aluminum in any form provided that the sum of the components is 100 wt. % is provided on steel.
Abstract:
The present invention provides low profile, thick (“stuby”) longitudinal fins having a cross section which is a parallelogram, trapezoid or a triangle extending from 10% to 100% of a coil pass and comprising from 3 to 45 weight % of a coil in a radiant section of a furnace for thermally cracking one or more of paraffins and naphtha. The fins provide an additional surface through which heat may be transferred to the coil making the coil more efficient reducing greenhouse emissions.
Abstract:
A substantially linear ceramic or metallic radiant of ellipsoidal or polygonal cross section is placed proximate furnace tubes or coils in the radiant section of a fired heater to increase the radiant heat directed to the surface of the tubes or coils.
Abstract:
A method for cracking hydrocarbon, comprises: providing steam and hydrocarbon; and feeding steam and hydrocarbon into a reactor accessible to hydrocarbon and comprising a perovskite material of formula AaBbCcDdO3-δ, wherein 0
Abstract:
A method for determining and identifying corrosion protective layers that provide corrosion protection against crude oils and crude oil fractions is disclosed. The method identifies naturally occurring constituents in crude oils that indirectly provide corrosion protection. A method assessing the potential of these constituents is also disclosed. The method includes exposing metal coupons with the crude oil or crude fraction of interest at the expected operating temperature of concern. The corrosion potential assessment further analyzes the exposed coupons with transmission electron microscopy and an additional high temperature exposure that challenges the tenacity of the protection offered by the corrosion protective layer.
Abstract:
Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from carbon steels or low chromium steels comprising less than 15.0 wt. % Cr based on the total weight of the steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 20.0 wt. % to 25.0 wt. % Cr, less than 0.4 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.
Abstract:
Coke formation in pyrolysis furnaces is controlled by applying a coating of boron nitride to pyrolysis furnace process equipment surfaces, for instance, parts of the transfer line heat exchanger assembly.
Abstract:
A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance to a heat transfer component surface includes providing a silicon containing steel composition including an alloy and a Si-partitioned non-metallic film formed on a surface of the alloy. The alloy is formed from the composition η, θ,and τ, in which η is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, θ is Si, and τ is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The Si-partitioned non-metallic film comprises at least one of sulfide, oxysulfide and mixtures thereof.