摘要:
A process for upgrading a naphtha feed includes separating the naphtha feed into at least a light naphtha fraction, contacting the light naphtha fraction with hydrogen in the presence of at least one cyclization catalyst, and contacting the cyclization effluent with at least one cracking catalyst. Contacting the light naphtha fraction with hydrogen in the presence of at least one cyclization catalyst may produce a cyclization effluent comprising a greater concentration of naphthenes compared to the light naphtha fraction. Contacting the cyclization effluent with at least one cracking catalyst under conditions sufficient crack at least a portion of the cyclization effluent may produce a fluid catalytic cracking effluent comprising light olefins, gasoline blending components, or both. A system for upgrading a naphtha feed includes a naphtha separation unit, a cyclization unit disposed downstream of the naphtha separation unit, and a fluid catalytic cracking unit disposed downstream of the cyclization unit.
摘要:
A process for upgrading a naphtha feed includes separating the naphtha feed into at least a light naphtha fraction, contacting the light naphtha fraction with hydrogen in the presence of at least one cyclization catalyst, and contacting the cyclization effluent with at least one cracking catalyst. Contacting the light naphtha fraction with hydrogen in the presence of at least one cyclization catalyst may produce a cyclization effluent comprising a greater concentration of naphthenes compared to the light naphtha fraction. Contacting the cyclization effluent with at least one cracking catalyst under conditions sufficient crack at least a portion of the cyclization effluent may produce a fluid catalytic cracking effluent comprising light olefins, gasoline blending components, or both. A system for upgrading a naphtha feed includes a naphtha separation unit, a cyclization unit disposed downstream of the naphtha separation unit, and a fluid catalytic cracking unit disposed downstream of the cyclization unit.
摘要:
A process for producing light olefins comprising thermal cracking. Hydrocracked streams are thermally cracked in a steam cracker to produce light olefins. A pyrolysis gas stream is separated into a light stream and a heavy stream. A light stream is separated into an aromatic naphtha stream and a non-aromatic naphtha stream. The aromatics can be saturated and thermally cracked. The integrated process may be employed to obtain olefin products of high value from a crude stream.
摘要:
The present invention concerns a process for the production of light olefins and BTX using a catalytic cracking unit, NCC, processing a naphtha type feed, and an aromatics complex. It can be used to exploit the synergies between these two units. The thermal balance of the NCC, which is intrinsically deficient in coke, is resolved by the optimal use of heat from the reforming furnaces in order to preheat the feed for the NCC, and by introducing at least a portion of the raffinate obtained from the aromatics complex as a mixture with the naphtha.
摘要:
Systems and methods for processing full range naphtha to produce light olefins are disclosed. The systems and methods include separating the full range naphtha into a light naphtha stream and a heavy naphtha stream and integrating a catalytic cracking with a naphtha reforming to process the light naphtha and heavy naphtha streams.
摘要:
Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and gas oil steam cracking. Feeds to the mixed feed steam cracker include one or more naphtha fractions from hydroprocessing zones within the battery limits, including vacuum residue hydrocracking, within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline aromatics extraction zone within the battery limits. Feed to the gas oil steam cracker in certain embodiments includes gas oil range intermediates from the vacuum residue hydrocracking zone. In addition, a base oil production center is integrated to provide base oils product used for production of synthetic lubes or corresponding lube oil feedstocks
摘要:
A process for increasing the yields of hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit.The process includes the ability to convert components from the cracking stream to the reforming stream.
摘要:
Embodiments of the present disclosure include methods for method of producing aromatic products, the methods including separating a crude oil and condensate feed into at least a light naphtha stream, a heavy naphtha stream, and a bottoms stream, reforming at least a portion of the heavy naphtha stream to produce a reformate stream, feeding a cracker feed stream, comprising the light naphtha stream, the bottoms stream, and a reformate extraction raffinate, to an olefins cracker to produce cracker products comprising pyrolysis gasoline, and introducing an extractor feed stream comprising the pyrolysis gasoline and the reformate to an aromatic extraction unit to produce an aromatic product and the reformate extraction raffinate.
摘要:
A process for maximizing p-xylene production includes producing a naphtha fraction and a light cycle oil fraction from a fluid catalytic cracking zone. These fractions are combined and hydrotreated. Fractionation of the hydrotreated product makes a hydrocracker feed that is sent to a hydrocracking zone to make a naphtha cut and a hydrocracker product. The hydrocracker product is recycled back to the fractionation zone, and the naphtha cut is dehydrogenated in a dehydrogenation zone to make aromatics. Reforming catalyst from a catalyst regenerator moves downward through the dehydrogenation zone. Straight run naphtha and raffinate from the aromatics unit are introduced to an additional series of reforming zones. The reforming catalyst moves in parallel through the first reforming zone and the dehydrogenation zones, then is combined for entry to the second and subsequent reforming zones prior to regeneration.
摘要:
A high-flux membrane, especially a sieving membrane, is used to separate a naphtha feedstock into a retentate fraction having a reduced concentration of normal paraffins for an enhanced reforming feed and a permeate fraction having an increased concentration of normal paraffins for an enhanced cracking feed.