Abstract:
The invention relates to the use in a photovoltaic module of a film of a composition as a backsheet or as an encapsulant, this composition comprising, with respect to the total weight of the composition: from 1 to 99% of a polyethylene having an ethylene whose level by weight is greater than or equal to 80% chosen from the homopolymers of ethylene and the copolymers of ethylene and another alpha-olefin; from 99 to 1% of a polyolefin B, other than A, carrying a reactive functional group X chosen from the anhydride carboxylic acids and epoxides. The invention further relates to a photovoltaic module comprising the film of the composition according to the invention and also a process for the manufacture of this module.
Abstract:
A film adhesive for sealing a plurality of chip-type devices on a substrate at one time, including an adhesive layer of an adhesive composition which exhibits a minimum value of a storage modulus of elasticity before curing from 1null103 to 5null105 Pa measured by using a dynamic visco-elasticity measuring apparatus while elevating the temperature from 80null C. to 150null C. at an elevating temperature rate of 2.4null C./min and at a shearing rate of 6.28 rad/sec and a storage modulus of elasticity after curing from 5null105 to 5null107 Pa measured by using a dynamic visco-elasticity measuring apparatus at a sample temperature of 150null C. in a tensile mode at a measuring frequency of 6.28 rad/sec.
Abstract:
A thermosetting adhesive which produces no foul odor or discharged gas, or form no bubbles under irradiation, and which exhibits a satisfactorily high bonding property, even under low-dose irradiation. The thermosetting adhesive contains an ethylene-glycidyl (meth)acrylate copolymer, whose principal monomer components are an ethylene and a glycidyl (meth)acrylate, and a sulphonium salt-comprising cationic polymerization catalyst.
Abstract:
An adhesive composition for use in joining a polarizer plate to a substrate of a liquid crystal cell contains as a main component (1) an ethylene-vinyl acetate copolymer, (2) a copolymer of ethylene, vinyl acetate, and an acrylate and/or methacrylate monomer, (3) a copolymer of ethylene, vinyl acetate, and maleic acid and/or maleic anhydride, (4) a copolymer of ethylene, an acrylate and/or methacrylate monomer, and maleic acid and/or maleic anhydride or (5) an ionomer resin in the form of an ethylene-methacrylic acid copolymer having a metal ion for binding molecules thereof. The composition is thermosetting when it contains an organic peroxide. The composition is photo-curable when it contains a photosensitizer.
Abstract:
An encapsulant composition containing about 15 to about 50 wt % of an ethylene/ethyl acrylate/maleic anhydride copolymer containing about 20 to about 40 wt % of an ethylene/glycidyl (meth)acrylate copolymer; about 2 to about 30 wt % of an ethylene/butyl acrylate/maleic anhydride copolymer; about 5 to about 50 wt % of polyethylene, about 0.05 to about 5 wt % of an adhesion promoter; and optionally about 0.01 to about 2 wt % of at least one additive. The composition is useful for encapsulating thin film devices. The disclosure also relates to a method of encapsulating thin film devices with the composition and to devices produced by the method.
Abstract:
The invention relates to biodegradable hot-melt adhesive compositions, preferably without residual tackiness at room temperature and having a biodegradability, as measured by the released carbon-dioxide analysis method pursuant to Standard EN ISO 14855, that is higher than 55%, preferably higher than 60%, and preferably higher than 90%, and to the use thereof. This percentage is given by reference with the cellulose biodegradability measurement, which amounts to 100% in the same conditions.
Abstract translation:本发明涉及可生物降解的热熔粘合剂组合物,优选在室温下不具有残留粘性并且具有生物降解性,如通过根据标准EN ISO 14855的释放的二氧化碳分析方法测得的,其高于55%,优选高于 60%,优选高于90%,以及其用途。 该百分比通过参考纤维素生物降解性测量给出,在相同条件下相当于100%。
Abstract:
The invention relates to a radiation crosslinkable hot melt pressure sensitive adhesive comprised of a radiation crosslinkable polymer as component (A) based on epoxidized polyolefins, wherein the epoxy groups are not consolidated in blocks; a tackifying resin possessing no epoxy groups as component (B); optionally a low molecular weight oligomer as component (C) that possesses reactive groups that can react with the epoxy groups of component (A); and an additive comprising a photo initiator as component (D).
Abstract:
A composition for preparing a reactive hot melt composition comprises (a) a thermoplastic polymer which comprises a polyolefin having an epoxy group, and (b) a radiation polymerizable component containing (b-1) an aliphatic alkyl (meth)acrylate and (b-2) an acrylic compound having a functional group reactive with an epoxy group. A reactive hot melt composition is obtained by polymerizing this composition so as to polymerize the radiation polymerizable component.The reactive hot melt composition which can be easily hot melt coated, crosslinked quickly in the absence of radiation or moisture after bonding adherends, does not form moisture during crosslinking, and has high flowability during hot melting.
Abstract:
This document relates to compositions including a crosslinkable polymer including a pendant epoxide repeat unit and an amine crosslinker, and methods of treating a subterranean formation by providing the composition to the formation. The pendant epoxide repeat unit has the structure Each R1 is independently a (C1-C10) alkylene or (C1-C10) alkylene ether, each alkylene ether independently having a ratio of carbon atoms to oxygen atoms of 1:1 to 4:1.
Abstract:
The invention relates to the use in a photovoltaic module of a film of a composition as a backsheet or as an encapsulant, this composition comprising, with respect to the total weight of the composition: from 1 to 99% of a polyethylene having an ethylene whose level by weight is greater than or equal to 80% chosen from the homopolymers of ethylene and the copolymers of ethylene and another alpha-olefin; from 99 to 1% of a polyolefin B, other than A, carrying a reactive functional group X chosen from the anhydride carboxylic acids and epoxides. The invention further relates to a photovoltaic module comprising the film of the composition according to the invention and also a process for the manufacture of this module.