Abstract:
A method of producing a polyether polyol includes reacting a low molecular weight initiator with one or more monomers in the presence of a polymerization catalyst, and the low molecular weight initiator has a nominal hydroxyl functionality of at least 2. The one or more monomers includes at least one selected from propylene oxide and butylene oxide. The polymerization catalyst is a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a fluoroalkyl-substituted phenyl group, R2 incudes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, R3 includes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
Abstract:
Poly(cyclic acetal)s, methods of making same, and uses of same. The poly(cyclic acetal)s may have a number average molecular weight (Mn) of 10 to 3000 kiloDaltons (kDa) and over 50% of the chain ends may exclude hydroxyl groups. The poly(cyclic acetal) may be a homopolymer or copolymer(s) of poly(1,3-dioxolane) (PDXL). The poly(cyclic acetal)s may have one or more or all of: a thermal stability (Td,5%) of 337° C. to 392° C.; a thermal stability of (Td.50%) of 377° C. to 462° C.; or an Arrhenius activation energy (Ea) of 85.0 kJ/mol with 2 mol % of strong acid (e.g., pKa less than or equal to 4). Methods of polymerizing poly(cyclic acetal)s may comprise reacting cyclic acetal monomers with either Lewis acid catalysts and haloalkyl ether initiators or organic cation salt catalyst(s) and proton traps. Methods of chemically recycling poly(cyclic acetal)s into cyclic acetals may react poly(cyclic acetal)s with strong acids.
Abstract:
A method of producing a polyether polyol includes reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, and the low molecular weight initiator has a nominal hydroxyl functionality at least 2. The polymerization catalyst is a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a fluoroalkyl-substituted phenyl group, R2 incudes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, R3 includes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
Abstract:
A method of producing a high primary hydroxyl group content and a high number average molecular weight polyol includes preparing a mixture that includes a double metal cyanide catalyst and a low molecular weight polyether polyol having a number average molecular weight of less than 1,000 g/mol, the polyether polyol is derived from propylene oxide, ethylene oxide, or butylene oxide, setting the mixture to having a first temperature, adding at least one selected from propylene oxide, ethylene oxide, and butylene oxide to the mixture at the first temperature, allowing the mixture to react to form a reacted mixture, adding a Lewis acid catalyst to the reacted mixture, setting the reaction mixture including the second catalyst to have a second temperature that is less than the first temperature, and adding additional at least one selected from propylene oxide, ethylene oxide, and butylene oxide to the reacted mixture at the second temperature such that a resultant polyol having a primary hydroxyl group content of at least 60% and a number average molecular weight greater than 2,500 g/mol is formed.
Abstract:
In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having one or more sites capable of initiating copolymerization of epoxides and CO2, wherein the chain transfer agent contains one or more masked hydroxyl groups. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups, a high percentage of carbonate linkages, and substantially all polycarbonate chains having hydroxyl end groups have no embedded chain transfer agent.
Abstract:
This disclosure relates to a method for preparing polyalkylenecarbonate. More specifically, in the method for preparing polyalkylenecarbonate, by using a solution polymerization with a specific heterogeneous catalyst and a solvent in the polymerization process of an epoxide compound and carbon dioxide, the products of side-reaction are reduced, removal of metal residues and by-products from the products is facilitated, danger due to overheating of the reactants is minimized, and heat removal and process stability are improved, and thus, high molecular weight copolymer may be easily provided, and mass production and scale-up are easy.
Abstract:
The present invention relates to a production method of polyalkylene oxide particles including a step of forming the polyalkylene oxide particles by polymerization of an alkylene oxide in a polymerization solution containing a polymerization solvent and a catalyst dispersed in the polymerization solvent. The average particle diameter of the catalyst is 25 μm or less.
Abstract:
This invention relates to a Salen type ligand including three or more quaternary ammonium salts of nitrate anions, to a trivalent metal complex compound prepared from this ligand and a method of preparing the same, to a method of preparing polycarbonate by copolymerizing an epoxide compound and carbon dioxide using the complex compound as a catalyst, and to a method of separating and collecting the catalyst from the copolymer after copolymerization. This catalyst used to copolymerize an epoxide compound and carbon dioxide can be more simply prepared, and has lower catalyst preparation and recovery costs, and higher activity, compared to conventional catalysts.
Abstract:
The present invention provides novel bimetallic complexes and methods of using the same in the isoselective polymerization of epoxides. The invention also provides methods of kinetic resolution of epoxides. The invention further provides polyethers with high enantiomeric excess that are useful in applications ranging from consumer goods to materials.