Abstract:
A composite media for non-oxidative C2H6 dehydrogenation comprises an aluminosilicate zeolite matrix, and an EDH catalyst on one or more of an external surface of the aluminosilicate zeolite matrix and internal surfaces within pores of the aluminosilicate zeolite matrix. The EDH catalyst comprises one or more of Fe, Zn, Pt, Ga, alloys thereof, and oxides thereof. A C2H6 activation system, and a method of processing a C2H6-containing stream are also described.
Abstract:
Disclosed is a method and plant for the catalytic dehydrogenation of alkanes, such as propane. The plant is a plant of hybrid architecture wherein one or more membrane-assisted reactor configurations according to open architecture are combined with one or more membrane-containing reactors of closed architecture. Hydrogen remaining in the reaction mixture after separation in the membrane separation unit of a first open architecture configuration, is fed to a first membrane-reactor of the closed architecture type. Also disclosed are methods of modifying plants so as to create the hybrid architecture plant.
Abstract:
Methods to synthesize fuels and chemicals from natural gas liquids are described. Higher alcohols are synthesized starting from natural gas liquid compounds by converting an alkane from a NGL to an olefin, dimerizing said olefin, and, hydrating said olefin product to form a higher alcohol. Higher alcohols are synthesized starting from natural gas liquid compounds by converting an alkane from a NGL to an olefin, oxidizing the olefin to form a ketone or aldehyde and, hydrogenating the aldehyde or ketone product to form a higher alcohol. Thus, NGL component butane may be dehydrogenated to form butane, butylene is oxidized in the presence of a catalyst to form methylethyl ketone and methylethyl ketone hydrogenated to form butanol.
Abstract:
The present invention relates to a catalytic composition which comprises microspheroidal alumina and an active component containing a mixture comprising Gallium and/or Gallium oxides, Tin and/or Tin oxides, a quantity ranging from 1 ppm to 500 ppm with respect to the total weight of the catalytic composition of platinum and/or platinum oxides, and oxides of alkaline and/or alkaline earth metals.
Abstract:
Disclosed is a process for the catalytic dehydrogenation of alkanes so as to form the corresponding olefins. The reaction mixture is subjected to membrane separation of hydrogen, in a separate unit. Preferably a plurality of alternating reaction and separation units is used. The process of the invention serves the purpose of reducing coke formation on the catalyst, and also of achieving a higher alkane conversion without a similar increase in coke formation. The process can also be used for the production of hydrogen.
Abstract:
Disclosed is a dehydrogenation method that includes supplying a feed containing a hydrocarbon and steam into a dehydrogenation reactor containing a dehydrogenation catalyst, contacting the hydrocarbon and steam with the dehydrogenation catalyst to form a dehydrogenation product, wherein the dehydrogenation product comprises a dehydrogenated hydrocarbon, unreacted feed, steam and hydrogen, passing the dehydrogenation product through a membrane separator, and permeating hydrogen through a membrane positioned in the membrane separator. The hydrocarbon can be an alkyl aromatic and the dehydrogenated hydrocarbon can be a vinyl aromatic hydrocarbon, optionally the hydrocarbon can be an alkane and the dehydrogenated hydrocarbon can be an alkene.
Abstract:
An apparatus and process are presented for drying a catalyst in a reactor-regenerator system. The process includes a continuous operating system with catalyst circulating between a reactor and regenerator, and the catalyst is dried before returning the catalyst to the reactor. The process uses air that is split between the drying stage and the combustion stage without adding equipment outside of the regenerator, minimizing energy, capital cost, and space requirements.
Abstract:
This invention relates to a bismuth molybdate catalyst, a preparation method thereof, and a method of preparing 1,3-butadiene using the same, and to a bismuth molybdate catalyst, a preparation method thereof, and a method of preparing 1,3-butadiene using the same, in which 1,3-butadiene can be prepared through oxidative dehydrogenation directly using a C4 mixture including n-butene and n-butane as a reactant in the presence of a mixed-phase bismuth molybdate catalyst including α-bismuth molybdate (Bi2Mo3On) and γ-bismuth molybdate (Bi2MoO6). According to this invention, the C4 raffinate, containing many impurities, is used as a reactant, without an additional n-butane separation process, thus obtaining 1,3-butadiene at high yield. Unlike complicated multicomponent-based metal oxides, the catalyst of the invention has simple constituents and synthesis routes, and can be easily formed through physical mixing, and thus is very advantageous in assuring reproducibility and can be directly applied to commercial processes.
Abstract:
A process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated in a reactor which is manufactured from a steel with specific elemental composition on its side in contact with the reaction gas, and also partial oxidations of the dehydrogenated hydrocarbon and the reactor itself.
Abstract:
The present invention relates to a thermally integrated multi-zone process for conversion of alkanes to their corresponding alkenes, involving endothermically converting an alkane to its corresponding alkene by soft oxidant conversion in an endothermic reaction zone, in the presence of a weak oxidant, a suitable catalyst, and heat, to produce an intermediate product gas comprising the corresponding alkene and hydrogen. The weak oxidant may be, for example, carbon dioxide. The hydrogen is then removed from the intermediate product gas by contacting the intermediate product gas, in an exothermic reaction zone, with different second catalyst, and oxygen, to combust the hydrogen and produce a heated product stream comprising the corresponding alkene, water and heat. Heat is recovered from the heated product stream and recycled back to the endothermic reaction zone, while the resulting cooled product stream comprising the corresponding alkene may be subjected to further reaction and/or processing.