Abstract:
In an embodiment, a method for the continuous manufacture of bisphenol A comprises reacting phenol and acetone in the presence of an acidic catalyst to form a product mixture comprising bisphenol A and phenol; directing the product mixture to a crystallization unit comprising a crystallization vessel and a heat exchanger for cooling the product mixture; and crystallizing bisphenol A-phenol adduct crystals from said product mixture in said crystallization unit to form a suspension of crystals; wherein a production rate of the bisphenol A through the heat exchanger is less than or equal to 18 kg bisphenol A per m of a heat exchanging surface per hour.
Abstract:
In an embodiment, a catalyst comprises a porous carrier having 5 to 200 pores per 2.54 centimeters and a pore volume of at least 90 vol % based on the total volume of the porous carrier; wherein the porous carrier comprises one or both of carbon and a metal; and a sulfonated, cross-linked polystyrene located on at least part of a surface of the porous carrier.
Abstract:
A compound represented by the following formula (1). (in formula (1), each R1 independently represents a divalent group having 1 to 30 carbon atoms, each of R2 to R7 independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, a thiol group or a hydroxyl group, in which at least one R5 represents a hydroxyl group or a thiol group, each of m2, m3 and m6 is independently an integer of 0 to 9, each of m4 and m7 is independently an integer of 0 to 8, m5 is an integer of 1 to 9, n is an integer of 1 to 4, and each of p2 to p7 is independently an integer of 0 to 2.)
Abstract:
Disclosed herein are compositions and methods of making phenolic compounds, and resins comprising these phenolic compounds. The compounds include multifunctional epoxies, amino glycidyl derivatives, and multi-functional amines prepared from hydroxymethyl derivatives of phenols and bisphenols. In one embodiment, a compound is of formula I wherein R1 is H or Z; each R2, R3, and R4, independently, are —N(Z)2, —N(CH2—O—Z)2, —N(CH2CH2—O—Z)2, —N(CH2OH)2, —N(CH2NH2)2, —O—Z, —CH2—O—Z, —CH2CH2—O—Z, —CH2OH, —CH2NH2, —O—C—(CH3)3, or —O-(alkylene)-CH3; and Z is
Abstract:
In an embodiment, a method of recovering acetone comprises separating a bisphenol A stream into a bisphenol A product stream and an extraction stream comprising unreacted acetone; recovering the unreacted acetone in a recovery section of the bisphenol A production facility and forming a bisphenol A plant acetone recovery stream comprising methanol and a recovered acetone; introducing the bisphenol A plant acetone recovery stream to a phenol purification plant; and purifying the bisphenol A plant acetone recovery stream in the phenol purification plant to form an acetone product stream. The acetone product stream can comprise a reduced amount of methanol as compared to the bisphenol A plant acetone recovery stream.
Abstract:
Disclosed herein are compositions and methods of making phenolic compounds, and resins comprising these phenolic compounds. The compounds include multifunctional epoxies, amino glycidyl derivatives, and multi-functional amines prepared from hydroxymethyl derivatives of phenols and bisphenols.
Abstract:
Provided are an apparatus and a method for preparing bisphenol A. In the present invention, all or some of a mother liquid stream is circulated to a flash rector through a bypass line after crystallization in a process of preparing bisphenol A so as to increase a conversion rate of bisphenol A in a reactor, reduce energy, and use a heating source of phenol to be discharged to an upper side of the flash reactor, and thus the reaction efficiency of the whole process can be increased.
Abstract:
Provided is a positive photoresist composition excellent in terms of heat resistance. A radically curable compound is represented by a general formula (1) below (where R1, R2, and R3 each independently represent an alkyl group having 1 to 8 carbon atoms; m and n each independently represent an integer of 1 to 4; p represents an integer of 0 to 4; X, Y, and Z each independently represent an acryloyloxy group, a methacryloyloxy group, or a hydroxy group, and at least one of X, Y, and Z represents an acryloyloxy group or a methacryloyloxy group; and t represents 1 or 2).
Abstract:
A method for estimating a fluid flow velocity may include receiving, with a processing device, a plurality of observations corresponding to a concentration of a constituent of a flowing fluid mixture, and computing a final estimate of an average velocity of the flowing fluid mixture based at least in part on the observations, wherein the constituent is undergoing a chemical reaction and the computing implements a reactive transport model.
Abstract:
A method for estimating a fluid flow velocity may include receiving, with a processing device, a plurality of observations corresponding to a concentration of a constituent of a flowing fluid mixture, and computing a final estimate of an average velocity of the flowing fluid mixture based at least in part on the observations, wherein the constituent is undergoing a chemical reaction and the computing implements a reactive transport model.