Abstract:
Laminate, method of manufacturing laminate, transistor, and method of manufacturing transistor using a composition having the following (a) to (c): (a) a first organic compound represented by Formula (1) below (R represents a hydrogen atom or a glycidyl group. A plurality of Rs may be identical to or different from each other, but each of at least two Rs is a glycidyl group), (b) a second organic compound represented by Formula (2) below, and (c) a photocationic polymerization initiator
Abstract:
The present invention provides an epoxy compound which is 2,2′,7,7′-tetraglycidyloxy-1,1′-binaphthalene. Also, the present invention provides a method for producing [1,1′-binaphthalene]-2,2′,7,7′-tetraol, the method including a step of bringing a crude product produced by dimerization reaction of naphthalene-2,7-diol or a naphthalene-2,7-diol derivative into contact with an aromatic solvent; a step of separating [1,1′-binaphthalene]-2,2′,7,7′-tetraol dissolved in the aromatic solvent from insoluble substances; and a step of removing the solvent from a solution of [1,1′-binaphthalene]-2,2′,7,7′-tetraol. The present invention also provides a method for producing an epoxy compound, the method including reacting [1,1′-binaphthalene]-2,2′,7,7′-tetraol or [1,1′-binaphthalene]-2,2′,7,7′-tetraol monohydrate with epihalohydrin.
Abstract:
The present invention provides an epoxy compound which is 2,2′,7,7′-tetraglycidyloxy-1,1′-binaphthalene. Also, the present invention provides a method for producing [1,1′-binaphthalene]-2,2′,7,7′-tetraol, the method including a step of bringing a crude product produced by dimerization reaction of naphthalene-2,7-diol or a naphthalene-2,7-diol derivative into contact with an aromatic solvent; a step of separating [1,1′-binaphthalene]-2,2′,7,7′-tetraol dissolved in the aromatic solvent from insoluble substances; and a step of removing the solvent from a solution of [1,1′-binaphthalene]-2,2′,7,7′-tetraol. The present invention also provides a method for producing an epoxy compound, the method including reacting [1,1′-binaphthalene]-2,2′,7,7′-tetraol or [1,1′-binaphthalene]-2,2′,7,7′-tetraol monohydrate with epihalohydrin.
Abstract:
Compounds useful as angiogenesis inhibiting agents and processes for their preparation are disclosed. In one embodiment, the compounds of the invention are represented by Formula 1: ##STR1## Also disclosed is a pharmaceutical composition for inhibiting angiogenesis in a mammal, said composition comprising a compound of Formula 1, or a pharmaceutically acceptable salt thereof, as an active ingredient.
Abstract:
Thermosettable resins, including epoxy resins, polythiirane resins and vinyl ester resins were prepared from compounds containing one or more discotic mesogenic moieties. The resultant thermosettable resins may be processed to provide the discotic liquid crystalline state. The thermosettable resin compositions can be employed in coating, casting, encapsulation, electronic or structural laminate or composite, filament winding, molding and the like applications.
Abstract:
A vertical reactor system having a plurality of substantially vertically aligned reaction compartments one on top of the other, the reactant materials (and catalyst and solvent, if desired), flowable from a first top compartment through intermediate compartments, if any, to a bottom compartment from which a desired product of a reaction of the reactant materials is withdrawn, the compartments having inlets for the addition of additional reactants, catalysts, or solvents and outlets for withdrawing by-products, vapors, and water from any compartment, and processes for producing products using such a system. In one embodiment the product is a liquid epoxy resin. Stirring impellers may be provided in any compartment. A liquid seal may be provided on a shaft for the impellers and, in one embodiment the seals in each compartment may be elevated above the liquid in the compartments.
Abstract:
An epoxy resin having a propenyl group conjugated with an aromatic ring is heat resistant and is easily molded and cured into products having high strength and Tg. It is thus useful as a resin component or modifier.
Abstract:
2,6-dibromo-3,5-dialkyl-4-hydroxybenzyl ethers, glycidyl ethers thereof and reaction products with phenolic hydroxyl-containing compounds, and glycidyl ethers of the resulting new phenolic hydroxyl-containing compounds.
Abstract:
The present invention relates to a novel mono-functional and bis-functional anthraquinone-(oxy-2,3-oxido-propanes) and to a process for their preparation. The compounds according to the invention are useful as intermediates in the preparation of drugs possessing a .beta.-receptor blocker action and as crosslinking agents in the preparation of polymers, and moreover exhibit cytostatic activity.