Abstract:
A vertical reactor system having a plurality of substantially vertically aligned reaction compartments one on top of the other, the reactant materials (and catalyst and solvent, if desired), flowable from a first top compartment through intermediate compartments, if any, to a bottom compartment from which a desired product of a reaction of the reactant materials is withdrawn, the compartments having inlets for the addition of additional reactants, catalysts, or solvents and outlets for withdrawing by-products, vapors, and water from any compartment, and processes for producing products using such a system. In one embodiment the product is a liquid epoxy resin. Stirring impellers may be provided in any compartment. A liquid seal may be provided on a shaft for the impellers and, in one embodiment the seals in each compartment may be elevated above the liquid in the compartments.
Abstract:
Epoxy resins low in aliphatic halogen are prepared by reacting a polyhydric phenol with an excess of an epihalohydrin in the presence of a secondary alcohol and an aqueous solution of an alkali metal hydroxide until from 45 to
Abstract:
Disclosed is an apparatus and process for producing a tripropylene glycol in which alkylene oxide, water, an acid catalyst and a dipropylene glycol are contacted together under conditions suitable to form the tripropylene glycol. Water is present in the reaction mixture in the range of about 1 to about 50 weight percent of the reaction mixture. The ratio of water to alkylene oxide is less than about 9. The tripropylene glycol thus produced exhibits a higher primary hydroxyl group content generally exceeding 36 percent. Such tripropylene glycols find utility in the production of acrylics. Also disclosed is a process for making esters from such glycols.
Abstract:
Disclosed is an apparatus and process for producing a tripropylene glycol in which alkylene oxide, water, an acid catalyst and a dipropylene glycol are contacted together under conditions suitable to form the tripropylene glycol. Water is present in the reaction mixture in the range of about 1 to about 50 weight percent of the reaction mixture. The ratio of water to alkylene oxide is less than about 9. The tripropylene glycol thus produced exhibits a higher primary hydroxyl group content generally exceeding 36 percent. Such tripropylene glycols find utility in the production of acrylics. Also disclosed is a process for making esters from such glycols.
Abstract:
A vertical reactor system having a plurality of substantially vertically aligned reaction compartments one on top of the other, the reactant materials (and catalyst and solvent, if desired), flowable from a first top compartment through intermediate compartments, if any, to a bottom compartment from which a desired product of a reaction of the reactant materials is withdrawn, the compartments having inlets for the addition of additional reactants, catalysts, or solvents and outlets for withdrawing by-products, vapors, and water from any compartment, and processes for producing products using such a system. In one embodiment the product is a liquid epoxy resin. Stirring impellers may be provided in any compartment. A liquid seal may be provided on a shaft for the impellers and, in one embodiment the seals in each compartment may be elevated above the liquid in the compartments.
Abstract:
An improved process for preparing a silver catalyst which comprises impregnating a porous alumina support with a silver salt, preferably silver nitrate, by contacting a quantity of the support with an aqueous solution of the salt in sufficient amount to be completely absorbed by said support while under a vacuum. A dispersing agent is also employed in the aqueous silver salt solution. The support is dried by heating, e.g. 100.degree. C., under vacuum and then, while still under vacuum, impregnated with a reducing agent employing an amount sufficient to be completely absorbed by the support. Subsequent heating at a higher temperature, e.g. 250.degree. C., reduces the silver salt to silver metal. A catalyst is produced which, when employed for the oxidation of ethylene, permits the process to run 5.degree.-10.degree. C. cooler at the normal conversion and also gives an improved yield.