Abstract:
The disclosure is directed to the use of an upflow reactor for producing a dihydroxy compound, to a method for producing a dihydroxy compound, and to a method for manufacturing polycarbonate. The upflow reactor for producing a dihydroxy compound of the disclosure comprises: a vessel; a catalyst bed disposed in said vessel; a distributor in fluid communication with an inlet through which reactants are introduced to said distributor, said distributor being disposed at a lower end of said vessel and comprising distributor perforation(s) disposed in said distributor, at least part of which distributor perforations are in a direction facing away from said catalyst bed; and a collector through which said product dihydroxy compound is removed, said collector being disposed at an upper end of said vessel.
Abstract:
In an embodiment, a method of recovering phenol comprises heating a preheater inlet stream in a preheater to form a splitter inlet stream; separating the splitter inlet stream into a splitter top outlet stream and a splitter bottom outlet stream in a splitter column; separating the splitter bottom outlet stream into a crude top outlet stream and a crude bottom outlet stream in a crude phenol column; hydro-extracting the crude top outlet stream in a hydro-extractor column to form an extractor primary outlet stream; recovering a product phenol outlet stream from the extractor primary outlet stream in a finishing column; combining a bisphenol A plant phenol recovery stream from a bisphenol A reaction from a bisphenol A phenol purification system with the preheater inlet stream, the splitter inlet stream, the splitter bottom outlet stream, the crude top outlet stream, or a combination comprising at least one of the foregoing.
Abstract:
In an embodiment, a catalyst comprises a porous carrier having 5 to 200 pores per 2.54 centimeters and a pore volume of at least 90 vol % based on the total volume of the porous carrier; wherein the porous carrier comprises one or both of carbon and a metal; and a sulfonated, cross-linked polystyrene located on at least part of a surface of the porous carrier.
Abstract:
In some embodiments, a method of making a polycarbonate composition comprises: polymerizing by an interfacial polymerization, reactants comprising a starting material comprising a bisphenol-A to form a bisphenol-A polycarbonate, wherein the bisphenol-A has a purity of greater than or equal to 99.65 wt % and a sulfur content of less than or equal to 2 ppm. The polycarbonate composition has a free hydroxyl content of less than or equal to 150 ppm, and wherein a molded article of the polycarbonate composition has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925.
Abstract:
In some embodiments, a composition comprises a bisphenol-A polycarbonate, wherein a molded article of the bisphenol-A polycarbonate has transmission level greater than or equal to 90.0% at 2.5 mm thickness as measured by ASTM D1003-00 and a yellow index (YI) less than or equal to 1.5 as measured by ASTM D1925. In some embodiments, light emitting device comprises: a lighting element located in a housing. The housing is formed from a plastic composition comprising: the polycarbonate composition and a conversion material. After the conversion material has been exposed to an excitation source, the conversion material has a luminescence lifetime of less than 10−4 seconds when the excitation source is removed.
Abstract:
The present invention relates to a method for the manufacture of a core-shell catalyst comprising the steps of a. providing core particles, b. functionalizing at least part of the surface of the core particles with a functionalizing agent thereby forming functionalized core particles, c. graft polymerizing at least one of aromatic vinyl compounds onto the functionalized core particles thereby forming core-shell particles wherein the core is comprised of the core particles and the shell is comprised of graft polymerized aromatic vinyl compounds and d. activating the shell by using a sulfonating agent wherein the core particles comprise or consists of glass particles and wherein the core particles are hydroxylated prior to step b). The present invention further relates to the use of the core-shell catalyst for the manufacture of bisphenol A by reacting phenol with acetone for increasing the selectivity towards the formation of p,p-bisphenol A.
Abstract:
In an embodiment a method of purifying acetone, comprises directing a feed stream comprising greater than or equal to 97 wt % of acetone and 100 to 1,000 ppm of methanol to a separation column, both based on a total weight of the feed stream; separating the feed stream in the separation column that is operating at a pressure greater than or equal to 1 bar into an overhead stream and a purified acetone stream comprising less than or equal to 50 ppm of methanol based on a total weight of the purified acetone stream; and directing at least 80 wt % of the overhead stream into the separation column as a reconstituted stream and purging 1 to 20 wt % of the overhead stream as a purge stream.
Abstract:
In an embodiment a method of purifying acetone, comprises directing a feed stream comprising greater than or equal to 97 wt % of acetone and 100 to 1,000 ppm of methanol to a separation column, both based on a total weight of the feed stream; separating the feed stream in the separation column that is operating at a pressure greater than or equal to 1 bar into an overhead stream and a purified acetone stream comprising less than or equal to 50 ppm of methanol based on a total weight of the purified acetone stream; and directing at least 80 wt % of the overhead stream into the separation column as a reconstituted stream and purging 1 to 20 wt % of the overhead stream as a purge stream.
Abstract:
The disclosure is directed to the use of an upflow reactor for producing a dihydroxy compound, to a method for producing a dihydroxy compound, and to a method for manufacturing polycarbonate. The upflow reactor for producing a dihydroxy compound of the disclosure comprises: a vessel; a catalyst bed disposed in said vessel; a distributor in fluid communication with an inlet through which reactants are introduced to said distributor, said distributor being disposed at a lower end of said vessel and comprising distributor perforation(s) disposed in said distributor, at least part of which distributor perforations are in a direction facing away from said catalyst bed; and a collector through which said product dihydroxy compound is removed, said collector being disposed at an upper end of said vessel.
Abstract:
The invention is directed to a method for the manufacture of bisphenol A, to the use of acid in a method for crystallisation of bisphenol A/phenol adduct, and to bisphenol A/phenol adduct crystals. The method for the manufacture of bisphenol A comprises: a) reacting phenol and acetone in the presence of an acidic catalyst to form a product mixture comprising bisphenol A; and b) crystallising a bisphenol A/phenol adduct from said product mixture, wherein said crystallisation is carried out in the presence of an acid, wherein the total amount of acid present during the crystallisation step is 5% or less by total weight of the reaction product.