Abstract:
The present disclosure relates to a method for cooling a component of a glass melting plant that contacts a glass melt, the corresponding cooling device, as well as the system of the cooling device and the cooled component itself. The method provides that a pipe with an open pipe end at least on one pipe section is introduced into an open cavity in the component with the formation of a peripheral annular space, and a cooling medium is introduced through the pipe into the cavity and is deflected at the base of the cavity, flows back in the annular space, and flows out of the cavity. In its pipe section introduced into the cavity, the pipe has a constriction and has perforations through the pipe walls in the region of the constriction, whereby the cooling medium is accelerated in its passage through the constriction in the inside of the pipe, and a portion of the cooling medium flowing back from the annular space is aspirated into the inside of the pipe.
Abstract:
There are provided a glass container that includes mouth portions formed at both end portions thereof facing each other and a manufacturing method of the glass container. Since the glass container is integrally molded by a one-press manufacturing method, the glass container may be more easily manufactured and the mechanical strength of the glass container may be improved in comparison with a case in which portions including mouth portions are separately manufactured and then are integrated with each other. Further, since the glass container is obtained by a one-press manufacturing method, the glass container is thick and has a high-class feeling. A glass container, which is integrally molded by a one-press manufacturing method, includes a first mouth portion and a second mouth portion that are formed at both end portions of the glass container facing each other.
Abstract:
A method of making a glass container comprising providing a mold defining an article having a base at a bottom of the mold cavity where the mold cavity comprises an undercut portion that defines a recess in the mold cavity; introducing molten glass to the mold; cooling the glass to cause the glass to shrink a sufficient amount that the protuberance recedes from the recess; and removing the container from the mold in a linear direction.
Abstract:
A method for manufacturing a display tube includes press-forming molten glass in a mold, cooling the formed glass after it has been taken out from the mold, and reducing the temperature gradient between center and edge of the panel by reflecting heat radiation back to a central portion of the panel.
Abstract:
To increase the strength of the glass panel of a CRT, the temperature of the glass panel is reduced during reforming from a temperature above, preferably at least 30° C. above the annealing point, to a temperature well below, preferably at least 80° C. below the strain point. This induces high surface compression in the glass panel, paired with a low rate of compaction. The glass panel is subsequently not subjected to the usual annealing step.
Abstract:
A cooling system for use with a glassware machine having a plunger, a mold and a valve. The system includes a supply of cooling fluid such as air. The system further includes devices for cooling the plunger, the mold and the valve that are in communication with the supply of fluid.
Abstract:
A method for forming parisons in the manufacture of hollow articles of glassware. The method comprising forming each parison by introducing a gob of molten glass into a mould cavity (10) having the shape desired for the external surface of the parison, and moving a plunger (14,70) into the mould cavity to cause the molten glass to conform to the shape of the cavity. The method also comprises forming a layer of gas (G.98) between a surface portion of the plunger and the molten glass so that, as the plunger moves into the cavity, the glass is pushed into shape by the layer of gas, and rotating or vibrating the plunger while it is in the mould cavity.
Abstract:
A mold has a mold cavity centered on an axis and formed with a plurality of arrays of passages each lying at least approximately in a respective plane including the mold axis. Fluid is passed through these passages in order to cool the mold, and fluid may be passed more rapidly or under greater pressure or under lower temperature through some of the passages than through others in order to increase the cooling effect. Similarly inserts may partially insulate some of the passages for cooling some parts of the mold more or less than others. A plurality of temperature sensors each connected to a respective control valve may serve to control the fluid flow through each of the passages or sets of passages for continuous cooling control.
Abstract:
A differentially cooled plunger cooperative with a mold for press forming glass articles and the method of cooling pressed glass articles formed in said mold by use of the pressing plunger. The plunger is designed so that cooling fluid may be supplied from a single source thereof to different zones or regions of the plunger for differential cooling of the zones or regions and of a glass article press formed by the plunger.
Abstract:
A PNEUMATICALLY OPERATED PRESS PLUNGER FOR GLASSWARE FORMING MACHINES HAVING AN AIR OPERATED CLAMPING RING FOR CONE-SOCKET COOPERATION, ALONG WITH A PARISON MOLD, IN CLAMPING THE TWO HALVES OF A SPLIT NECK RING TOGETHER DURING A PARISON PRESSING OPERATION. THE PRESS PLUNGER ALSO HAS AN AIR OPERATED PLUNGER HOLDER TO INSURE THE PLUNGER BEING HELD IN OPERATIVE POSITION YET PERMIT READY CHANGE OF PLUNGERS TO ACCOMMODATE DIFFERENT TYPES OF WARE.