Abstract:
Provided is a glass material that can satisfy both high Faraday effect and high light transmittance at wavelengths used. A glass material containing, in terms of % by mole of oxide, more than 40% Tb2O3 and having a percentage of Tb3+ of 55% by mole or more relative to a total content of Tb.
Abstract:
Provided is a method that can manufacture a glass material having excellent homogeneity by containerless levitation. With a block (12) of glass raw material held levitated above a forming surface (10a) of a forming die (10) by jetting gas through a gas jet hole (10b) opening on the forming surface (10a), the block (12) of glass raw material is heated and melted by irradiation with laser beam, thus obtaining a molten glass, and the molten glass is then cooled to obtain a glass material. Control gas is jetted to the block (12) of glass raw material along a direction different from a direction of jetting of the levitation gas for use in levitating the block (12) of glass raw material or the molten glass.
Abstract:
A method of making articles from preformed materials includes placing a preformed material on a mold such that a non-quality region of the preformed material contacts the mold and a quality region of the preformed material is free of contact with the mold. A non-contact support is provided to the quality region to control sagging of the quality region. A reformable area of the preformed material is formed into a select shape by contacting the reformable area with a forming tool while restricting contact between the forming tool and the reformable area to the non-quality region. After the forming of the reformable area, an article is extracted from the quality region.
Abstract:
The development of cracks or breakage in a glass material during production of the glass material by a containerless levitation technique is reduced. A glass material is obtained by heating a levitated block 12 of glass raw material to melting by irradiation of the block 12 of glass raw material with laser light to thus obtain a molten glass and then cooling the molten glass. A first irradiation step and a second irradiation step are performed. In the first irradiation step, the levitated block 12 of glass raw material is heated to melting by irradiating the block 12 of glass raw material with the laser light. In the second irradiation step, an intensity of the laser light being applied to the molten glass is reduced and irradiation with the laser light is then stopped.
Abstract:
An apparatus for stabilizing a flow of a viscous material, such as a molten glass or glass ceramic material in a tube or rod forming process is disclosed. The apparatus comprises a stabilization member through which the molten glass is passed after leaving the nozzle of a forming vessel. The stabilization member is positioned a finite distance below the nozzle. The column of viscous material is supported by a wall of the stabilization member, or by a gaseous film disposed between the column and the stabilization member. A method of stabilizing the flow of viscous material after it leaves the nozzle during a drawing process is also disclosed.
Abstract:
The invention relates to a method and device for non-contact molding of fused glass or glass ceramic gobs by means of gas levitation, comprising the following method steps: a pre-form is generated, the pre-form is brought close to a molding tool, which may be connected to a compressed gas source on the open-pored region thereof facing the pre-form in order to generate a gas cushion between the molding tool and the pre-form and the molding tool is directly heated at least during a part of the molding phase.
Abstract:
The present invention relates to production of a flat glass, which can improve the surface smoothness of a flat glass in the moving direction and which prevents formation of stripes on the flat glass. A fixed bed 15 comprising a plurality of supports 12 arranged in such a state that they will not move at least in a direction in parallel with the moving direction of a glass ribbon 13, and having grooves 12B to let loose the steam generated by vaporization of a steam film forming agent formed between the respective supports 12, is used, and the amount of the steam let loose from the grooves is adjusted in accordance with the glass temperature distribution in the moving direction of the glass ribbon 13 which moves on the fixed bed 15.
Abstract:
The invention relates to a method and device for non-contact moulding of fused glass or glass ceramic gobs by means of gas levitation, comprising the following method steps: a pre-form is generated, the pre-form is brought close to a moulding tool, which may be connected to a compressed gas source on the open-pored region thereof facing the pre-form in order to generate a gas cushion between the moulding tool and the pre-form and the moulding tool is directly heated at least during a part of the moulding phase.
Abstract:
Method of heating glass contacting surfaces, comprising heating the glass contacting surfaces to a predetermined operating temperature by combustion of a hydrocarbon fuel gas mixture which includes 90% by volume of MAPP gas and 10 percent by volume of propane. Another method blends the MAPP with air and/or natural gas. A novel hydrocarbon fuel gas mixture which includes 90% by volume of MAPP gas and 10% by volume of propane.
Abstract:
A fluidic support device is described that counteracts the gravitational bending moment present in a substrate tube during a modified chemical vapor deposition preform fabrication process. Hence, use of this device results in the production of a straight optical fiber preform. The device includes a hemicylindrical annulus section in close proximity to the portion of the substrate tube to be supported, and uses flowing fluid to offset gravity and to center the substrate tube. Gaseous use of the device increases and stabilizes the thermophoretic force without contact by either solid or liquid materials, avoiding any reduction in strength of the finished fiber.