Abstract:
A magnet positioning system for positioning magnets inside pipes includes a first stackable paddle that includes slots for accepting magnets and a second stackable paddle that includes a metal component for attracting the magnets and securing the magnets in the slots when the paddles are stacked together. Once stacked together, the paddles are inserted into position inside a pipe and the metal component is removed to release the magnets which move toward, and attach to, the inside wall of the pipe. A fluid conduit is positioned between the magnets using a spacer and a fixing agent permanently secures the magnets, fluid conduit, and spacer in place.
Abstract:
The present invention relates to a single module, flow-electrode apparatus for continuous water desalination, ion separation and selective ion removal and concentration by capacitive deionization, comprising: a first current collector (1), a first compartment (1′) for a flow electrode, a first ion exchange membrane (AEM, CEM), a first liquid-permeable channel (6a) next to the first ion exchange membrane (AEM, CEM), a second ion exchange membrane (CEM, AEM) with a fixed charge opposite to that of the first ion exchange membrane (AEM, CEM) next to the first liquid-permeable channel (6a), a second liquid-permeable channel (6b) next to the second ion exchange membrane (CEM, AEM), a third ion exchange membrane (AEM, CEM) having the same fixed charge as the first ion exchange membrane (AEM, CEM) next to the second liquid-permeable channel (6b), a second compartment (2′) for a flow electrode, and a second current collector (2), wherein a fluid (4) containing suspended conductive particles or a mixture of conductive and non-conductive particles or particles made of a mixture of conductive and non-conductive materials (5) is provided in the first and second compartments (1′, 2′), acting as the flow electrode, as well as a corresponding method.
Abstract:
An electrolysis nano ion water generator includes a cathode electrolytic tank, an anode electrolytic tank, an ion exchange membrane, and two electrolytic plates. During the electrolysis process, gases are generated and stay between the cathode electrolytic plate and the anode electrolytic plate. By adjusting the distance between the cathode electrolytic plate and the anode electrolytic plate, the gases can be removed from the area.
Abstract:
The fluid purification disclosed herein provides the advantages of high-voltage purification without electrocution risks. In illustrative purifiers, a contaminated fluid, such as contaminated water, is aerated and passed through a cavity that contains highly porous piezoelectric material and an ultrasonic transducer. The transducer emits ultrasonic energy that causes the piezoelectric material to discharge a high-voltage field, which produces strong oxidizing agents that kill organisms and oxidize organic pollutants. Since the ultrasonic actuator operates at relatively low voltages (e.g., 20-110 V) and can be electrically isolated from the fluid, illustrative purification is safe, environmentally friendly, and scalable from small to large size applications.
Abstract:
A method for electrochemically selectively removing ions using a composite electrode is provided. The composite electrode includes a composite having a carbon support and an inorganic material immobilized on the carbon support.
Abstract:
The apparatus for water treatment using in-situ activation of a manganese dioxide catalyst includes: a reaction bath configured to give a space where aqueous organic contaminants are removed by means of reaction with permanganate (MnO4−) generated by electrochemical oxidation of manganese oxide (MnO2); a plurality of manganese dioxide catalysts provided at the reaction bath and electrochemically oxidized into permanganate (MnO4−) by a voltage applied thereto; and a power supply device configured to apply power to the manganese dioxide catalyst so that the manganese dioxide (MnO2) is electrochemically oxidized into permanganate (MnO4−).
Abstract:
A method for preparing un-hardened ceramic micro-electrolysis fillers by industrial solid wastes comprises: (1) Scrap iron, lignin, red mud and clay was completely mixed as mass ratio (4-5):(2-3):(1-3):3 and then made into pellets; (2) The dried pellets were sintered without oxygen. The production could be used in wastewater treatment, which could not only increase biodegradability but also decrease CODCr and toxicity in a short time.
Abstract:
An object of the present invention is to provide a cheap and efficient method and device to remove ions from an electrolytic media, such as water desalination.The invention relates to a cell adapted to remove ions from an liquid electrolytic media, comprising a housing with: two inlets and two outlets, a unique porous membrane ionically conducting but electrically insulating, lying between the two inlets and the two outlets to constitute two compartments, each one comprising one of the inlets and one of the outlets, two electrodes, each one in electronic contact with one compartment.
Abstract:
The present invention provides a system that includes a glow discharge cell and a plasma arc torch. A first valve is connected to a wastewater source. An eductor has a first inlet, a second inlet and an outlet, wherein the first inlet is connected to the outlet of the electrically conductive cylindrical vessel, the second inlet is connected to the first valve, and the outlet is connected to the tangential inlet of the plasma arc torch. A second valve is connected between the tangential outlet of the plasma arc torch and the inlet of the glow discharge cell, such that the plasma arc torch provides the electrically conductive fluid to the glow discharge cell and the glow discharge cell provides a treated water via the outlet centered in the closed second end.
Abstract:
The present invention provides a system that includes a glow discharge cell and a plasma arc torch. A first valve is connected to a wastewater source. An eductor has a first inlet, a second inlet and an outlet, wherein the first inlet is connected to the outlet of the electrically conductive cylindrical vessel, the second inlet is connected to the first valve, and the outlet is connected to the tangential inlet of the plasma arc torch. A second valve is connected between the tangential outlet of the plasma arc torch and the inlet of the glow discharge cell, such that the plasma arc torch provides the electrically conductive fluid to the glow discharge cell and the glow discharge cell provides a treated water via the outlet centered in the closed second end.