Abstract:
A method for electrochemically selectively removing ions using a composite electrode is provided. The composite electrode includes a composite having a carbon support and an inorganic material immobilized on the carbon support.
Abstract:
An electrolytic reduction module and a water purification device are provided. The electrolytic reduction module includes an electrode set, a first baffle, and a second baffle. The electrode set includes an anode, a first cathode, and a second cathode. The anode is disposed between the first cathode and the second cathode. The first cathode is disposed between the first baffle and the anode. The second cathode is disposed between the second baffle and the anode.
Abstract:
A method of manufacturing a porous fluorine-containing polymer membrane is provided, which includes mixing a fluorine-containing polymer, a pore creating agent, and a solvent to form a mixture; forming a membrane of the mixture, and removing the pore creating agent and the solvent in the membrane to form the porous fluorine-containing polymer film. The pore creating agent has a chemical formula of wherein R1 is a C1-8 alkyl group, a C2-8 alkenyl group, a C2-8 alkynyl group, or a C6-12 aromatic group, and A⊖ is hydrogen sulfite ion, dihydrogen phosphate ion, nitrate ion, halogen ion, or a combination thereof. The solvent has a chemical formula of
Abstract:
An electrodialysis module includes at least one base unit. The base unit includes a working tank, a first ion-exchange membrane, a second ion-exchange membrane, at least one first electrode, and at least two second electrodes. The first ion-exchange membrane and the second ion-exchange membrane are located in the working tank. The first ion-exchange membrane and the second ion-exchange membrane together divide the working tank into two electrode compartments and a desalination compartment therebetween. The at least one first electrode is disposed in the desalination compartment. The at least two second electrodes are disposed in each of the electrode compartments, respectively, in which the at least two second electrodes and the at least one first electrode have different polarities.
Abstract:
A method and an apparatus for hydrolyzing an organic solid are described. The method includes mixing an organic solid and a nanobubble water having a plurality of nanobubbles, to form an organic liquid, in which the nanobubbles contain a combustible gas; and applying an ultrasonic wave on the organic liquid, such that the nanobubbles generate an additional cavitation effect. A preprocessor is applicable to an organic solid processing system having an anaerobic digestion tank, in which the anaerobic digestion tank has anaerobic microbes for generating a combustible gas. The preprocessor includes a nanobubble water generator, a digestion tank, and an ultrasonic wave generator. With the method and the structure, the nanobubbles are used to increase the probability of generation of the additional cavitation effect, and the combustible gas is used to improve an impact force of bursts produced by the cavitation effect.
Abstract:
An electrolytic reduction module and a water purification device are provided. The electrolytic reduction module includes an electrode set, a first baffle, and a second baffle. The electrode set includes an anode, a first cathode, and a second cathode. The anode is disposed between the first cathode and the second cathode. The first cathode is disposed between the first baffle and the anode. The second cathode is disposed between the second baffle and the anode.
Abstract:
A binder for capacitive deionization electrode is provided, which is formed by reacting a polyether polyol, a diisocyanate, and a diol having a hydrophobic side chain. The binder may bind an electrode material and to form a capacitive deionization electrode. The electrode material and the binder may have a weight ratio of 90:5 to 90:25.
Abstract:
A forward osmosis process is provided, which includes separating a feed part and a draw solution part by a semi-permeable film. An ionic liquid is introduced into the draw solution part, and brine is introduced into the feed part. The brine has an osmotic pressure lower than that of the ionic liquid, so that pure water of the brine permeates through the semi-permeable film, enters the draw solution part, and mixes with the ionic liquid to form a draw solution. The draw solution was obtained out of the draw solution part to be left to stand at room temperature, so that the draw solution separated into a water layer and an ionic liquid layer. The ionic liquid includes
Abstract:
A composite is provided, the composite comprises a carbon support, and a layered double hydroxide (LDH) immobilized on the carbon support for selectively removing phosphorus. An electrode for electrochemical removal of phosphorus, and methods and apparatuses for electrochemical purification by utilizing the electrode are also provided.
Abstract:
A method for cleaning membrane is provided. The method includes, providing a membrane, introducing a thermo-sensitive ionic liquid to contact the membrane and perform a cleaning procedure to collect a cleaning solution, and layering the cleaning solution to form an aqueous layer and an ionic liquid layer at a specific temperature.