Abstract:
The object of the present invention is to provide a needle coke for a graphite electrode, which suppresses puffing of the needle coke and improves the production yield and performances of graphite electrodes without incurring a large cost in the production of a needle coke, and also provide a production method and an inhibitor therefor. An inhibitor for graphite electrode production, including at least one of a metal consisting of an element (Mβ) and an oxide comprising the element (Mβ), wherein the element (Mβ) is at least one element selected from the group consisting of group 4 elements, group 8 elements, group 9 elements, group 10 elements, group 13 elements, group 14 elements and group 15 elements of the long-form periodic table, or including at least one of the metal consisting of an element (Mβ) and a compound including the element (Mβ), wherein the inhibitor volatilizes at a temperature of 2100 to 6000° C.
Abstract:
A particulate material having a body including a first phase having at least about 70 wt % alumina for a total weight of the first phase, and a second phase comprising phosphorus, wherein the body includes at least about 0.1 wt % of the second phase for the total weight of the body, and wherein the second phase has an average grain size of not greater than about 1 micron.
Abstract:
Materials are presented of the formula: Ax My Mizi O2-d, where A is sodium or a mixed alkali metal including sodium as a major constituent; x>0; M is a metal or germanium; y>0; Mi, for i=1, 2, 3 . . . n, is a transition metal or an alkali metal; zi≧0 for each i=1, 2, 3 . . . n; 0 2-d. The formula includes compounds that are oxygen deficient. Further the oxidation states may or may not be integers i.e. they may be whole numbers or fractions or a combination of whole numbers and fractions and may be averaged over different crystallographic sites in the material. Such materials are useful, for example, as electrode materials in rechargeable battery applications. Also presented is a method of preparing a compound having the formula Ax My Mizi O2-d.
Abstract:
A particulate material having a body including a first phase having at least about 70 wt % alumina for a total weight of the first phase, and a second phase comprising phosphorus, wherein the body includes at least about 0.1 wt % of the second phase for the total weight of the body, and wherein the second phase has an average grain size of not greater than about 1 micron.
Abstract:
Provided herein are methods for dehydrating single-walled metal oxide nanotubes by heating the SWNT under vacuum at 250-300° C.; methods of dehydroxylating SWNT, comprising heating the SWNT under vacuum at 300-340° C., and methods for maximizing the pore volume of a SWNT, comprising heating the SWNT at 300° C. under vacuum to partially dehydroxylate and dehydrate the SWNT; methods of modifying the inner surface of a single walled aluminosilicate nanotube (SWNT), comprising dehydration or dehydration and dehydroxylation, followed by reacting the SWNT with a derivative under anhydrous conditions to produce a SWNT that is derivatized on its inner surface. The invention also includes single-walled nanotubes produced by the methods of the invention.
Abstract:
Methods for preparing nc-Ge/GeO2 composites by under reductive thermal processing conditions are described. Also described are methods of preparing freestanding nc-Ge via release from the nc-Ge/GeO2 composites.
Abstract:
A process for preparing hydrogenated polygermane as a pure compound or mixture of compounds, including hydrogenating halogenated polygermane.
Abstract:
A process for preparing a halogenated polysilane HpSin−pX(2n+2)−p with n=1 to 50; 0≦p≦2n+1, and X=F, Cl, Br, I, as an individual compound or a mixture of compounds, from a mixture which includes the halogenated polysilane or in which the halogenated polysilane is formed, additionally includes boron-containing impurities, wherein a) the mixture is admixed with at least 1 ppbw (parts per billion per weight) of a siloxane-forming oxidizing agent or siloxane, the boron-containing impurities forming compounds having a volatility and/or solubility different from the halogenated polysilanes, b) the halogenated polysilane is separated from the compound(s), and c) not more than 1 ppmw of water and not less than 1 ppb of siloxanes are present.
Abstract:
The invention relates to a method for producing dimeric and/or trimeric silicon compounds, in particular silicon halogen compounds. The claimed method is also suitable for producing corresponding germanium compounds. The invention also relates to a device for carrying out said method to the use of the produced silicon compounds.
Abstract:
Thermoelectric eutectic and off-eutectic compositions comprising a minor phase in a thermoelectric matrix phase are provided. These compositions include eutectic and near eutectic compositions where the matrix phase is a chalcogenide (S, Se, Te) of Ge, Sn, or Pb or an appropriate alloy of these compounds and at least one of Ge, Ge1-xSix, Si, ZnTe, and Co are precipitated as the minor phase within the matrix. Methods of making and using the compositions are also provided. The thermoelectric and mechanical properties of the compositions make them well-suited for use in thermoelectric applications. Controlled doping of eutectic compositions and hypereutectic compositions can yield large power factors. By optimizing both the thermal conductivities and power factors of the present compositions, ZT values greater than 1 can be obtained at 700K.