Abstract:
The present invention provides a gas purification system with improved efficiency, simpler construction, cost reduction, form factor improvements, and increased durability. The present invention provides cost and form factor improvements through fewer components overall and through utilizing multiple integrated components. Prior art gas purification system are more bulky and complicated. The present invention achieves increased thermal efficiency through utilization of a regenerative heat exchanger to recapture a portion of the heat energy transferred to the gas during the purification process. Prior art purifiers lacked a regenerative heat exchanger. The present invention integrates the two components into one integrated heater and purification vessel assembly. The present invention integrates the two discrete components into one integrated hydrogen sorption and particle filter assembly. The integrated hydrogen sorption and particle filter assembly is also capable of operating at higher temperatures. This cases maintenance and manufacture. The resulting gas purification system is simpler through utilizing fewer components, smaller by utilizing fewer and integrated components, and reduced cost through fewer components, smaller components and through reduced manufacture labor requirements.
Abstract:
A process is disclosed for producing non-evaporable getter materials having high porosity and improved gas absorption rates. The process includes mixing together a metallic getter element, a getter alloy and a solid organic compound, all three components being in the form of powders having specific particle sizes. The mixture is subjected to a compression of less than about 1000 kg/cm.sup.2 and is sintered at a temperature between about 900.degree. C. and about 1200.degree. C. for a period between about 5 minutes and about 60 minutes. The getter material thus obtained is used to produce getter bodies shaped as pellets, sheets or discs having better mechanical strength than similar bodies of other getter material having comparable porosity.
Abstract translation:公开了一种用于生产具有高孔隙率和改善的气体吸收速率的非蒸发性吸气剂材料的方法。 该方法包括将金属吸气剂元件,吸气剂合金和固体有机化合物混合在一起,所有三种组分都是具有特定粒径的粉末形式。 将混合物经受小于约1000kg / cm 2的压缩,并在约900℃至约1200℃的温度下烧结约5分钟至约60分钟。 由此获得的吸气剂材料用于生产具有比具有可比较的孔隙率的其它吸气材料的类似物体更好的机械强度的颗粒,片或盘形状的吸气体。
Abstract:
A method and an apparatus for removing impurities from a noble gas or nitrogen utilizing a single purifier vessel having three zones. In the first zone, the gas is preheated to a temperature greater than 200.degree. C.; in the second zone, the preheated gas is contacted with a getter material at greater than 335.degree. C. for removal of impurities such as methane and other hydrocarbons, water, carbon monoxide, nitrogen, oxygen, and carbon dioxide; in the third zone, the gas is contacted with a second getter material at a temperature greater than 150.degree. C. for removal of hydrogen. Hot gas exiting the purifier vessel is passed through a recuperative heat exchanger where the hot exiting gas preheats in-coming gas before it enters the first zone of the purifier vessel.
Abstract:
The present invention provides a gas purification system with improved efficiency, simpler construction, cost reductions, form factor improvements, and increased durability. The present invention provides cost and form factor improvements through fewer components overall and through utilizing multiple integrated components. Prior art gas purification systems are more bulky and complicated. The present invention achieves increased thermal efficiency through utilization of a regenerative heat exchanger to recapture a portion of the heat energy transferred to the gas during the purification process. Prior art purifiers lacked a regenerative heat exchanger. The present invention integrates the two components into one integrated heater and purification vessel assembly. The present invention integrates the two discrete components into one integrated hydrogen sorption and particle filter assembly. The integrated hydrogen sorption and particle filter assembly is also capable of operating at higher temperatures. This eases maintenance and manufacture. The resulting gas purification system is simpler through utilizing fewer components, smaller by utilizing fewer and integrated components, and reduced cost through fewer components, smaller components and through reduced manufacture labor requirements.
Abstract:
This invention is directed to a system and a process for protecting a gas purification system from damage comprising passing a stream of impure gas through a catalyst bed and measuring the temperature difference before and after the catalyzed bed reaction through a data analyzer to determine the impurity of the gas prior to controlling the feed of impure gas into or out of a reactor for producing a purified gas. In a preferred embodiment, the catalytic beds may be in parallel form, and the plurality of temperature measurements before and after the catalytic beds is considered by a data analyzer for controlling the impure gas for feeding into the purification reactor.
Abstract:
Non-evaporable getter alloys containing zirconium, vanadium, iron, manganese and one or more elements selected among yttrium, lanthanum and Rare Earths are described, having improved features of gas sorption, particularly of nitrogen, with respect to the known getter alloys.
Abstract:
A two-stage process method for removal of impurities such carbon monoxide, carbon dioxide, oxygen, water, hydrogen, and methane from inert gases at ambient temperature (0.degree.-60.degree. C.). In the first stage the inert gas is contacted with a nickel catalyst, and in the second stage the inert gas is passed over a getter alloy. Purified gas exiting the second stage of the purifier contains less than one part per billion (ppb) levels of the impurities. The nickel catalyst and getter alloy are initially activated at elevated temperature. The catalyst and getter may be reactivated by heating and purging, and hydrogen previously removed from impure gas can be used in the reactivation process.