Abstract:
The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
Abstract:
Provided is a method of manufacturing an acceleration sensor capable of preventing bonding of a movable electrode and a fixed electrode. A stain film 8 for reducing bonding adsorption force is formed on side surfaces of a movable electrode 1, fixed electrodes 2a and 2b and a frame portion 7. In the case in which the movable electrode 1 and the fixed electrodes 2a and 2b are to be formed of a silicon substrate, it is preferable that an insulating film having irregular bonding of silicon atoms and oxygen atoms and irregular bonding of silicon atoms and nitrogen atoms should be employed for the stain film 8, for example. The formation of the stain film 8 can suppress the bonding between the movable electrode 1 and the fixed electrodes 2a and 2b even if Coulomb force is generated between both electrodes when the silicon substrate and a back side substrate 4 are joined by using an anode junction method.
Abstract:
A microstructure comprising a substrate (1), a patterned structure (beam member) (2) suspended over the substrate (1) with an air-space (4) therebetween and supporting structure (3) for suspending the patterned structure (2) over the substrate (1).The microstructure is prepared by using a sacrificial layer (7) which is removed to form the space between the substrate (1) and the patterned structure (2) adhered to the sacrificial layer. In the case of using resin as the material of the sacrificial layer, the sacrificial layer can be removed without causing sticking, and an electrode can be provided on the patterned structure.The microstructure can have application as electrostatic actuator etc., depending on choice of shape and composition.
Abstract:
A suspended microstructure fabrication process. Photoresist pedestals are inserted in a sacrificial layer between the suspended microstructure and the substrate and photoresist spacers are inserted in the microstructure layer between non contacting portions of the suspended microstructure so that the photoresist pedestals and spacers support the microstructure bridge during the wet etching and drying process used to remove the sacrificial layer.
Abstract:
The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
Abstract:
A method of making a microelectromechanical systems (MEMS) device includes etching away a sacrificial material layer to release a mechanical element of the MEMS device. The MEMS device is formed at least partially on the sacrificial material layer, and the etching leaves a residue in proximity to the mechanical element. The residue is exposed to an anhydrous solution to remove the residue. The residue may be an ammonium fluorosilicate-based residue, and the anhydrous solution may include acetic acid, isopropyl alcohol, acetone, or any anhydrous solution that can effectively dissolve the ammonium fluorosilicate-based residue.
Abstract:
There are provided a processing liquid for suppressing pattern collapse of a fine metal structure, containing at least one member selected from an imidazolium halide having an alkyl group containing 12, 14 or 16 carbon atoms, a pyridinium halide having an alkyl group containing 14 or 16 carbon atoms, an ammonium halide having an alkyl group containing 14, 16 or 18 carbon atoms, a betaine compound having an alkyl group containing 12, 14 or 16 carbon atoms, and an amine oxide compound having an alkyl group containing 14, 16 or 18 carbon atoms, and a method for producing a fine metal structure using the same.
Abstract:
Methods, devices, and systems provide MEMS devices exhibiting at least one of reduced stiction, reduced hydrophilicity, or reduced variability of certain electrical characteristics using MEMS devices treated with water vapor. The treatment is believed to form one or more passivated surfaces on the interior and/or exterior of the MEMS devices. Relatively gentle temperature and pressure conditions ensure modification of surface chemistry without excessive water absorption after removal of sacrificial material to release the MEMS devices.
Abstract:
An etch release for a MEMS device on a substrate includes etching the substrate with an etchant vapor and a wetting vapor. A thermal bake of the MEMS device, after the etch release may be used to volatilize residues. A supercritical fluid may also be used to remove residual contaminants. The combination of the etchant vapor, such as HF, and the wetting vapor, such as an alcohol vapor, improves the uniformity of the etch undercut on the substrate.
Abstract:
A monolithic capacitance-type microstructure includes a semiconductor substrate, a plurality of posts extending from the surface of the substrate, a bridge suspended from the posts, and an electrically-conductive, substantially stationary element anchored to the substrate. The bridge includes an element that is laterally movable with respect to the surface of the substrate. The substantially stationary element is positioned relative to the laterally movable element such that the laterally movable element and the substantially stationary element form a capacitor. Circuitry is disposed on the substrate and operationally coupled to the movable element and the substantially stationary element for processing a signal based on a relative positioning of the movable element and the substantially stationary element. A method for fabricating the microstructure and the circuitry is disclosed.