Abstract:
This projector includes a light source portion applying a laser beam, an oscillating mirror element scanning light and a conductive member supporting the oscillating mirror element, and makes the conductive member generate heat by applying power to the conductive member.
Abstract:
In a microelectromechanical system (MEMS) device, a CMOS die is affixed to a die-mounting surface and wire-bonded to electrically conductive leads, and a MEMS die is stacked on and electrically coupled to the CMOS die in a flip-chip configuration. A package enclosure envelopes the MEMS die, CMOS die and wire bonds, and exposes respective regions of the electrically conductive leads.
Abstract:
A dc heater comprising: a discrete heating area made of a heat conductive material disposed on a surface that is electrically non-conductive; and at least one conductive trace configured to be connected to a dc voltage source and to heat the discrete heating area to a uniform temperature when connected to the dc voltage source, the at least one conductive trace disposed in an undulating configuration on the surface at least partially around the discrete heating area.
Abstract:
Among other things, one or more semiconductor arrangements and techniques for forming such semiconductor arrangements are provided herein. A semiconductor arrangement comprises a cap wafer, a microelectromechanical systems (MEMS) wafer, and a complementary metal-oxide-semiconductor (CMOS) wafer. The MEMS wafer comprises a thermal insulator air gap formed between a sensing layer and a membrane. An ambient pressure chamber is formed between the CMOS wafer and the membrane of the MEMS wafer. The ambient pressure chamber is configured as a second thermal insulator air gap. The thermal insulator air gap and the second thermal insulator air gap protect portions of the semiconductor arrangement, such as the MEMS wafer, from heat originating from the CMOS wafer, which can otherwise damage such portions of the semiconductor arrangement. In some embodiments, one or more buffer layers are formed over the cap wafer as stress buffers.
Abstract:
A low-profile packaging structure for a microelectromechanical-system (MEMS) resonator system includes an electrical lead having internal and external electrical contact surfaces at respective first and second heights within a cross-sectional profile of the packaging structure and a die-mounting surface at an intermediate height between the first and second heights. A resonator-control chip is mounted to the die-mounting surface of the electrical lead such that at least a portion of the resonator-control chip is disposed between the first and second heights and wire-bonded to the internal electrical contact surface of the electrical lead. A MEMS resonator chip is mounted to the resonator-control chip in a stacked die configuration and the MEMS resonator chip, resonator-control chip and internal electrical contact and die-mounting surfaces of the electrical lead are enclosed within a package enclosure that exposes the external electrical contact surface of the electrical lead at an external surface of the packaging structure.
Abstract:
An apparatus includes a first substrate of a first material having a first bonding surface, and one or more fluidic channels open at a plane of the first bonding surface. The apparatus also includes a different second material disposed on the first substrate. The second material connects two different portions of the one or more fluidic channels. An outer surface of the second material is at the plane of the first bonding surface at positions between the two portions. The apparatus also includes a second substrate having a second bonding surface in contact with the first bonding surface, the second substrate configured to confine fluid flow within the one or more fluidic channels. In a Joule-Thompson cryocooler apparatus, the first material is a first thermally insulating material and the second material is a thermally conductive material and the second substrate is made of a second thermally insulating material.
Abstract:
A low-profile packaging structure for a microelectromechanical-system (MEMS) resonator system includes an electrical lead having internal and external electrical contact surfaces at respective first and second heights within a cross-sectional profile of the packaging structure and a die-mounting surface at an intermediate height between the first and second heights. A resonator-control chip is mounted to the die-mounting surface of the electrical lead such that at least a portion of the resonator-control chip is disposed between the first and second heights and wire-bonded to the internal electrical contact surface of the electrical lead. A MEMS resonator chip is mounted to the resonator-control chip in a stacked die configuration and the MEMS resonator chip, resonator-control chip and internal electrical contact and die-mounting surfaces of the electrical lead are enclosed within a package enclosure that exposes the external electrical contact surface of the electrical lead at an external surface of the packaging structure.
Abstract:
A low-profile packaging structure for a microelectromechanical-system (MEMS) resonator system includes an electrical lead having internal and external electrical contact surfaces at respective first and second heights within a cross-sectional profile of the packaging structure and a die-mounting surface at an intermediate height between the first and second heights. A resonator-control chip is mounted to the die-mounting surface of the electrical lead such that at least a portion of the resonator-control chip is disposed between the first and second heights and wire-bonded to the internal electrical contact surface of the electrical lead. A MEMS resonator chip is mounted to the resonator-control chip in a stacked die configuration and the MEMS resonator chip, resonator-control chip and internal electrical contact and die-mounting surfaces of the electrical lead are enclosed within a package enclosure that exposes the external electrical contact surface of the electrical lead at an external surface of the packaging structure.
Abstract:
In a packaging structure for a microelectromechanical-system (MEMS) resonator system, a resonator-control chip is mounted on a lead frame having a plurality of electrical leads, including electrically coupling a first contact on a first surface of the resonator-control chip to a mounting surface of a first electrical lead of the plurality of electrical leads through a first electrically conductive bump. A MEMS resonator chip is mounted to the first surface of the resonator-control chip, including electrically coupling a contact on a first surface of the MEMS resonator chip to a second contact on the first surface of the resonator-control chip through a second electrically conductive bump. The MEMS resonator chip, resonator-control chip and mounting surface of the first electrical lead are enclosed within a package enclosure that exposes a contact surface of the first electrical lead at an external surface of the packaging structure.
Abstract:
A stacked die package for an electromechanical resonator system includes a chip that contains an electromechanical resonator bonded onto the control chip for the electromechanical resonator by a thermally and/or electrically conductive epoxy. In various embodiments, the electromechanical resonator can be a micro-electromechanical system (MEMS) resonator or a nano-electromechanical system (NEMS) resonator. Packaging configurations that may include the chip that contains the electromechanical resonator and the control chip include chip-on-lead (COL), chip-on-paddle (COP), and chip-on-tape (COT) packages. The stacked die package provides small package footprint and/or low package thickness, as well as low thermal resistance and a robust conductive path between the chip that contains the electromechanical resonator and the control chip.