Abstract:
A personal watercraft has: a hull; a deck, a straddle-type seat; a motor; a jet propulsion unit; a steering column support; a steering column pivotally connected to the steering column support; a handlebar connected to the steering column; a steering arm connected to the steering column; a push-pull cable connected between the steering arm and a nozzle arm of a steering nozzle of the jet propulsion unit; and a steering damper disposed between the handlebar and the steering column support. The steering damper has: a first portion connected to the steering column and being movable with the steering column; and a second portion connected to the steering column support, the steering column being pivotable relative to the second portion, the first portion being movable relative to the second portion, movement of the first portion relative to the second portion damping pivoting of the steering column about the steering column axis.
Abstract:
Systems, methods, and devices for enhancing steering control of a personal watercraft. An electrically actuated device is coupled to the steering system of the personal watercraft and applies torque to the steering system. At least one sensor is positioned adjacent the steering system and generates operational data of the personal watercraft. At least one controller is coupled to the electrically actuated device and the at least one sensor, and is configured to determine a first torque to apply to the steering system based on the operational data responsive to a second torque being applied to the steering system. The at least one controller is further configured to operate the electrically actuated device to apply the first torque to the steering system for providing enhanced steering control of the personal watercraft, with the first torque being applied only by the electrically actuated device.
Abstract:
A personal watercraft includes a watercraft body including a deck. The deck includes a side-opening storage recessed inward to accommodate items. The side-opening storage has an opening facing outward in a width direction of the watercraft body.
Abstract:
A water bike has a frame supported on first and second spaced apart pontoons or similar floatation elements. Pedals are attached to cranks on a front sprocket rotatably supported on the frame. A chain or belt extends around the front sprocket and around a rear sprocket on a gearbox. An outdrive is supported on the gearbox and pivotal about a vertical axis relative to the gearbox. The combined outdrive and gearbox are pivotable about a horizontal axis relative to the frame. A propeller on the outdrive is mechanically linked to a first gear in the gearbox, with the first gear meshing with a second gear attached to the rear sprocket. A steering bar is pivotally attached to the frame. A steering linkage connects the steering bar to the outdrive, for pivoting the outdrive to steer the water bike.
Abstract:
A water bike has a frame supported on first and second spaced apart pontoons. Pedals are attached to cranks on a front sprocket rotatably supported on the frame. A chain or belt extends around the front sprocket and around a rear sprocket on a gearbox. An outdrive is supported on the gearbox and pivotal about a vertical axis relative to the gearbox. The combined outdrive and gearbox are pivotable about a horizontal axis relative to the frame. A propeller on the outdrive is mechanically linked to a first gear in the gearbox, with the first gear meshing with a second gear attached to the rear sprocket. A steering linkage connects a steering bar to the outdrive, for pivoting the outdrive to steer the water bike. An inflatable deck is attached to the first and second pontoons.
Abstract:
A tiller arm for outboard motors includes a first portion adapted to be coupled to the outboard motor and a second portion adapted to be coupled to a command terminal. The first and the second portions of the tiller arm are telescopically engageable to one another, and a blocking system between the first and second portions is configured to block a mutual sliding at predetermined positions.
Abstract:
A vehicle control system comprising a first set of handlebar grips including a first grip mounted on a first side of the vehicle and a second grip mounted on a second side of the vehicle and a second set of handlebar grips mounted on the vehicle including a third grip mounted on the first side of the vehicle and a fourth grip mounted on the second side of the vehicle, the first and third grips being mounted in at least one position thereof in parallel, coplanar relation and the second and fourth grips being mounted in at least one position thereof in parallel, coplanar relation. In a specific embodiment, the invention further includes a first set of controls mounted on the first set of handlebars and a second set of controls mounted on the second set of handlebars. The first set of controls may be identical to the second set.
Abstract:
A water bike has a frame supported on first and second spaced apart pontoons or similar floatation elements. Pedals are attached to cranks on a front sprocket rotatably supported on the frame. A chain or belt extends around the front sprocket and around a rear sprocket on a gearbox. An outdrive is supported on the gearbox and pivotal about a vertical axis relative to the gearbox. The combined outdrive and gearbox are pivotable about a horizontal axis relative to the frame. A propeller on the outdrive is mechanically linked to a first gear in the gearbox, with the first gear meshing with a second gear attached to the rear sprocket. A steering bar is pivotally attached to the frame. A steering linkage connects the steering bar to the outdrive, for pivoting the outdrive to steer the water bike.
Abstract:
A steering control system for a watercraft includes a pivoting steering tiller manually operated and operatively connected to a direction changing member acting on or into the water, such as a rudder blade or an outboard motor; and a system locking the steering tiller in the steering position, which can be activated for keeping the tiller in a predetermined pivoting position and deactivated for allowing the tiller to be moved in a pivoting position to carry out a change in direction. According to the invention the locking system is switchable by way of switching actuators that are controlled by a control member provided on the arm.
Abstract:
A vehicle control system comprising a first set of handlebar grips including a first grip mounted on a first side of the vehicle and a second grip mounted on a second side of the vehicle and a second set of handlebar grips mounted on the vehicle including a third grip mounted on the first side of the vehicle and a fourth grip mounted on the second side of the vehicle, the first and third grips being mounted in at least one position thereof in parallel, coplanar relation and the second and fourth grips being mounted in at least one position thereof in parallel, coplanar relation. In a specific embodiment, the invention further includes a first set of controls mounted on the first set of handlebars and a second set of controls mounted on the second set of handlebars. The first set of controls may be identical to the second set of controls. The second set of controls is coupled to or through the first set of handlebar controls. In a preferred embodiment, an adjustment mechanism is included with a drive motor for changing a mounting angle of the second set of handlebars relative to the first set of handlebars and a second drive motor for changing a mounting distance of the second set of handlebars relative to the first set of handlebars.