摘要:
Presented are intelligent electronic footwear and apparel with controller-automated features, methods for making/operating such footwear and apparel, and control systems for executing automated features of such footwear and apparel. A method for automating a collaborative operation between an intelligent electronic shoe (IES) and an intelligent transportation management (ITM) system includes receiving, via a detection tag attached to the IES shoe structure, a prompt signal from a transmitter-detector module communicatively connected to a traffic system controller of the ITM system. In reaction to the received prompt signal, the detection tag transmits a response signal to the transmitter-detector module. The traffic system controller uses the response signal to determine a location of the IES's user, and the current operating state of a traffic signal proximate the user's location. The traffic system controller transmits a command signal to the traffic signal to switch from the current operating state to a new operating state.
摘要:
Presented are intelligent electronic footwear and apparel with controller-automated features, methods for making/operating such footwear and apparel, and control systems for executing automated features of such footwear and apparel. A method for operating an intelligent electronic shoe (IES) includes receiving, e.g., via a controller through a wireless communications device from a GPS satellite service, location data of a user. The controller also receives, e.g., from a backend server-class computer or other remote computing node, location data for a target object or site, such as a virtual shoe hidden at a virtual spot. The controller retrieves or predicts path plan data including a derived route for traversing from the user's location to the target's location within a geographic area. The controller then transmits command signals to a navigation alert system mounted to the IES's shoe structure to output visual, audio, and/or tactile cues that guide the user along the derived route.
摘要:
Presented are intelligent electronic footwear and apparel with controller-automated features, methods for making/operating such footwear and apparel, and control systems for executing automated features of such footwear and apparel. A method for operating an intelligent electronic shoe (IES) includes receiving, e.g., via a controller through a wireless communications device from a GPS satellite service, location data of a user. The controller also receives, e.g., from a backend server-class computer or other remote computing node, location data for a target object or site, such as a virtual shoe hidden at a virtual spot. The controller retrieves or predicts path plan data including a derived route for traversing from the user's location to the target's location within a geographic area. The controller then transmits command signals to a navigation alert system mounted to the IES's shoe structure to output visual, audio, and/or tactile cues that guide the user along the derived route.
摘要:
Presented are intelligent electronic footwear and apparel with controller-automated features, methods for making/operating such footwear and apparel, and control systems for executing automated features of such footwear and apparel. A method for operating an intelligent electronic shoe (IES) includes receiving, e.g., via a controller through a wireless communications device from a GPS satellite service, location data of a user. The controller also receives, e.g., from a backend server-class computer or other remote computing node, location data for a target object or site, such as a virtual shoe hidden at a virtual spot. The controller retrieves or predicts path plan data including a derived route for traversing from the user's location to the target's location within a geographic area. The controller then transmits command signals to a navigation alert system mounted to the IES's shoe structure to output visual, audio, and/or tactile cues that guide the user along the derived route.
摘要:
Presented are intelligent electronic footwear with controller automated features, methods for making/using such footwear, and control systems for executing automated features of intelligent electronic footwear. An intelligent electronic shoe includes an upper that attaches to a user's foot, and a sole structure attached to the upper for supporting thereon the user's foot. A collision threat warning system, a detection tag, a wireless communications device, and a footwear controller are all mounted to the sole structure/upper. The detection tag receives a prompt signal from a transmitter-detector module and responsively transmits thereto a response signal. The footwear controller receives, through the wireless communications device, a pedestrian collision warning signal generated by the remote computing node responsive to the response signal. Responsively, the footwear controller transmits a command signal to the collision threat warning system to generate a visible, audible and/or tactile alert warning the user of an impending collision with a vehicle.
摘要:
Presented are intelligent electronic footwear and apparel with controller-automated features, methods for making/operating such footwear and apparel, and control systems for executing automated features of such footwear and apparel. A method for automating a collaborative operation between an intelligent electronic shoe (IES) and an intelligent transportation management (ITM) system includes receiving, via a detection tag attached to the IES shoe structure, a prompt signal from a transmitter-detector module communicatively connected to a traffic system controller of the ITM system. In reaction to the received prompt signal, the detection tag transmits a response signal to the transmitter-detector module. The traffic system controller uses the response signal to determine a location of the IES's user, and the current operating state of a traffic signal proximate the user's location. The traffic system controller transmits a command signal to the traffic signal to switch from the current operating state to a new operating state.
摘要:
A smart safety garment with signal lights includes a basic garment, at least a pair of turn signal lights embedded on the external surface of the basic garment, and an electronic assembly for the control. The management and monitoring of the smart safety garment includes a control unit, the at least a pair of turn signal lights being connected or connectable to the control unit. The electronic assembly further includes a braking sensor connected or connectable to the control unit and adapted to perceive a deceleration and to generate a corresponding braking signal intended to the control unit. The control unit is configured to power up at least a pair of turn signal lights according to the braking signal.
摘要:
Systems and methods to detect and warn proximate entities of interest are described herein. An example method includes determining threat levels for hazards in a plurality of different zones within a building, classifying the threat levels into at least one of a first threat level and a second threat level, designating a first zone of the plurality of different zones having the first threat level with a first detectable indicator, and designating a second zone having the second threat level with a second detectable indicator.
摘要:
Systems and methods to detect and warn proximate entities of interest are described herein. An example detection system includes a light source attachable to a forktruck, where the light source projects an illuminated warning field on a floor on which the forktruck is to traverse. The light source projects the illuminated warning field at a distance from a front end of the forktruck. The light source is separate from a headlight of the forktruck.
摘要:
A garment (e.g., vest) designed to be worn over a motorcyclist's outer clothing with high intensity LED lighting installed on front and rear surfaces thereof and motion-sensing circuitry and corresponding software that detects motorcycle deceleration and controls the sequence, color and/or intensity of the LED lighting. A small, light battery pack installed in the garment powers the system. The motion-sensing circuitry and software detects that the motorcycle is decelerating when the driver releases or reduces the throttle, downshifts and/or applies the brakes. Responsive to the driver releasing or reducing the throttle, downshifting, applying the brakes and/or riding on upward-directed terrain, the electronics and software change the color output of LEDs on the rear surface of the garment to red. The electronics of the garment are sealed in watertight assemblies.