Abstract:
The invention relates to a method for producing a syringe with an integrated closure element, which method comprises the following method steps:
a) making available an injection moulding tool which comprises a first, a second and a third tool portion, wherein the first tool portion has a mould cavity open at both sides and extending along an axial direction (X), and wherein the second tool portion has a first injection moulding core and the third tool portion has a second injection moulding core; b) closing the injection moulding tool such that the first tool portion contacts the second and third tool portion, and the first and second injection moulding core each enter the mould cavity of the first tool portion through an opening and finally contact each other, as a result of which these tool portions form a first structural cavity; c) injecting a first plastic material into the first structural cavity, as a result of which a hollow cylindrical syringe body is formed with an end region at its distal end, wherein the end region has an attachment element, provided with an inner thread, and a hollow cylindrical endpiece which is at least partially bounded by the attachment element; d) cooling the tool portions, as a result of which the syringe body cools and hardens; e) bringing the first tool portion into contact with a fourth tool portion provided with a mould cavity closed at one end, as a result of which a second structural cavity is formed at the distal end of the syringe body; f) injecting a second plastic material into the second structural cavity, as a result of which the closure element is integrally formed on the attachment element, wherein the first and the second plastic material do not enter into a cohesive connection.
Abstract:
A method for making a cleated plate member for an article of footwear is described. The method includes a number of steps where various molds are used to form different components of the cleated plate member. A collar receptacle is formed using a first molding process. A cleat member is formed from a non-compatible material with a fastener of the cleat member associated with the collar receptacle using another molding process to form a combined cleat assembly. The combined cleat assembly is placed into corresponding receptacles in a mold used to form the cleated plate member. The cleated plate member is formed using another molding process that embeds the collar receptacle into the body of the cleated plate member. The completed cleated plate member includes releasably attached cleat members.
Abstract:
A collapsible core of an injection mold includes relatively movable components arrayed about an imaginary centerline. When in an operational position for molding a new product, the movable components each define a separate segment of the exterior of the core, such as side by side segments of interior features such as a continuous set of threads to be formed in a product being molded. To move between operational and retracted positions, some core components are pivotally connected to a nest of the core, and others are translatably connected to the nest. When a newly molded product is ejected from the mold, ejection movement causes the pivotally connected core components to pivot to disengage the newly formed interior features, and causes the translatably connected components to translate to disengage the newly formed interior features.
Abstract:
An in-mold shutter (140) for embedding in an injection mold (100, 200, 300) is described herein. The in-mold shutter (140, 240, 340, 440, 540) includes a shutter actuator (148, 548) that is configured to selectively engage a first mold shoe (130) of the injection mold (100, 200, 300) with a platen of a mold clamping assembly (996) to hold the first mold shoe (130) in an extended position (E), along a mold-stroke axis (X), during a step of molding a first molded article (102A) in the injection mold (100, 200, 300). Also described herein is a molded article transfer device (150, 250) for use with the injection mold (100, 200, 300). The molded article transfer device (150, 250) includes a shuttle (154) that is slidably arranged, in use, within the injection mold (100, 200, 300). The shuttle (154) defines a first aperture (156A), at least in part, that alternately accommodates: (i) a first mold stack (106A, 206A, 306A) arranged therein; and (ii) a first molded article (102A) received therein with opening of the first mold stack (106A, 206A, 306A).
Abstract:
A method for producing a package closure having a neck, a cap and an axis (A) includes a) by means of movable jaws and a tool core forming the neck with an outer thread and the cap with an inner thread, wherein an interior of the neck is formed by an outer first tool core part, and wherein an interior of the cap is formed by an inner second tool core part and a third tool core part, the thread of the cap being formed by the third tool core part, b) removing the jaws from the formed package closure, c) axially displacing the second tool core part in relation to the first tool core part and thereby separating the cap and the neck, d) axially displacing the third tool core part in relation to the second tool core part and thereby disengaging the cap from the third tool core part while keeping the second tool core part engaged with the cap, e) displacing the neck axially in relation to the cap and bringing the thread of the cap into engagement with the thread of the neck through an inherent flexibility of the package closure to form a package closure having a cap mounted on the neck, and f) displacing the package closure in relation to the second tool core part to disengage the package closure from the tool core.
Abstract:
The invention relates to a cosmetic product applicator, in particular for mascara, said applicator being configured to be screwed on a receptacle for said product, said applicator comprising a cover (22), intended to be manipulated by a user, a rod (24), intended to bear an applicator end-piece, and a molded interface zone (30) on which said cover (22) and/or said rod (24) are mounted, said interface zone (30) bearing a thread (32) for screwing said applicator (20) on said receptacle (10), said thread forming less than one turn.
Abstract:
A worm wheel is provided in which a step is not formed near a tooth face meshing with a worm, and noise does not easily occur during power transmission.A worm wheel 1 includes a circular arc-shaped tooth section 5 that is a portion meshing with a worm 101 and configuring a circular tube worm gear, and a helical tooth section 4 that is connected to one end side of the circular arc-shaped tooth section 5. An angle of torsion at an arbitrary reference point 14 in a tooth depth direction of a tooth 3 on a boundary 7 between the circular arc-shaped tooth section 5 and the helical tooth section 4 is equal to an angle of torsion at a second reference point 15 corresponding to the first reference point 14 in the tooth depth direction of the tooth 3 in a diameter portion P0 of a throat of the circular arc-shaped section 5. As a result, a step is not formed on a tooth face on the boundary 7 between the circular arc-shaped tooth section 5 and the helical tooth section 4. A tooth face of the circular arc-shaped tooth section 5 and a tooth face of the helical tooth section 4 are smoothly connected.
Abstract:
A method for making a cleated plate member for an article of footwear is described. The method includes a number of steps where various molds are used to form different components of the cleated plate member. A collar receptacle is formed using a first molding process. A cleat member is formed from a non-compatible material with a fastener of the cleat member associated with the collar receptacle using another molding process to form a combined cleat assembly. The combined cleat assembly is placed into corresponding receptacles in a mold used to form the cleated plate member. The cleated plate member is formed using another molding process that embeds the collar receptacle into the body of the cleated plate member. The completed cleated plate member includes releasably attached cleat members.
Abstract:
A method for forming a container assembly having a lid, a container and a cooperative closure mechanism, includes providing a lid form and flexible members biased toward the lid form, wherein the lid form and the flexible members are operable between a forming position defined by the lid form exerting a biasing force against the flexible members, and an extraction position defined by the biasing force being substantially removed from the flexible members, creating a lid form cavity defined by the lid form and the flexible members disposed in the forming position, injecting a lid material throughout the lid form cavity to form a lid, disposing the lid form and the flexible members in the extraction position, wherein the lid form is moved distal from the lid and the flexible members are biased away from the lid to separate the lid from the flexible members.
Abstract:
An in-mold shutter (140) for embedding in an injection mold (100, 200, 300) is described herein. The in-mold shutter (140, 240, 340, 440, 540) includes a shutter actuator (148, 548) that is configured to selectively engage a first mold shoe (130) of the injection mold (100, 200, 300) with a platen of a mold clamping assembly (996) to hold the first mold shoe (130) in an extended position (E), along a mold-stroke axis (X), during a step of molding a first molded article (102A) in the injection mold (100, 200, 300). Also described herein is a molded article transfer device (150, 250) for use with the injection mold (100, 200, 300). The molded article transfer device (150, 250) includes a shuttle (154) that is slidably arranged, in use, within the injection mold (100, 200, 300). The shuttle (154) defines a first aperture (156A), at least in part, that alternately accommodates: (i) a first mold stack (106A, 206A, 306A) arranged therein; and (ii) a first molded article (102A) received therein with opening of the first mold stack (106A, 206A, 306A).