Abstract:
An injection molding system includes a molding device, an inspection device configured to inspect a molded product and a control device that includes a storage unit, and a reception unit configured to receive a change content of a parameter included in a standard molding condition. The control device executes a first control of forming the molded product under a second molding condition in which the parameter is changed based on the change content, a second control of forming the molded product under a third molding condition in which the same parameter is changed, a third control of associating the second molding condition with an inspection result of the molded product formed under the second molding condition and storing the association, and a fourth control of associating the third molding condition with the inspection result of the molded product formed under the third molding condition and storing the association.
Abstract:
An energy management control apparatus for a molding machine that includes a first electrically-driven prime mover configured to drive at least a first molding machine device, and a second electrically-driven prime mover configured to drive at least a second molding machine device, includes a common DC link configured to provide DC energy to the first electrically-driven prime mover and to the second electrically-driven prime mover. A slave axis is configured to supply and absorb energy from to/from the common DC link. A machine controller is configured to (i) communicate with the first electrically-driven prime mover, the second electrically-driven prime mover, the common DC link, and the slave axis, (ii) cause the slave axis to supply energy to the common DC link in response to input from at least one of the first electrically-driven prime mover and the second electrically-driven prime mover, and (iii) cause the slave axis to absorb energy from the common DC link in response to input from at least one of the first electrically-driven prime mover and the second electrically-driven prime mover.
Abstract:
The retraction of the screw is controlled on the basis of the pressure deviation between the set resin pressure and the detected resin pressure. Furthermore, the screw is caused to rotate at a set speed. Moreover, when the deviation between the metering completion position and the current screw retraction position drops to a value that is equal to or less than a set value, control of the retraction of the screw based on the pressure deviation is stopped, and the control is switched to positioning control based on the positional deviation. Furthermore, a screw rotational speed command in which the pressure deviation component between the set resin pressure and the current resin pressure is corrected from the screw rotational speed component that is decelerated in proportion to the positional deviation is determined and output.
Abstract:
The present invention is applicable to an injection molding machine comprising an injection device having a servo motor for use in rotating a screw and a controller for controlling the servo motor. The controller has a rotation speed N previously set therein as a set value for the screw rotation in a metering process. The controller rotates the screw at an acceleration A1 until the rotation speed of the screw reaches a value NK (where NK
Abstract:
A injection molding machine includes a power device including a movable plate, a primary motorized cylinder having a primary threaded rod screwed through the movable plate, a secondary motorized cylinder having a secondary threaded rod screwed through the movable plate, a first starter mounted on the primary motorized cylinder and connected with a controller, and a second starter mounted on the secondary motorized cylinder and connected with the controller. The second starter contains a bias factor command and a preset output command. Thus, the normal torque output of the secondary motorized cylinder is close to that of the primary motorized cylinder by control of the bias factor command, and the preset output command limits and prevents the normal torque output of the secondary motorized cylinder from being greater than that of the primary motorized cylinder.
Abstract:
An injection molding machine that performs a safe ejecting action of a molded article until a setting state of an ejector rod and a set forward end position for an ejection stroke of a molded article ejector are suitable for a mold in use. A resistor R1 is set to ON when a mold is changed and a resistor R2 is set to ON when a set value of the forward end position of the ejection stroke is changed. When resistor R1 or resistor R2 is ON, ejection is performed with a reduced ejecting force and at a reduced ejecting velocity. When a detected position of the ejector rod reaches the set forward end position, resistors R1 and R2 are turned OFF and thereafter the ejection is performed with a normal ejecting force and a normal ejecting velocity, to thereby prevent damage to the mold or to the molded article ejector.
Abstract:
An injection molding machine comprises a pre-pressure addition means 2 adding a pre-pressure B acting in the opposite direction of a molding material pressure A received by a screw 1 to a detection means 3 and/or the screw 1, the detection means 3 detecting the axial pressures A and B of the screw, and a screw movement control means 4 controlling the axial pressure based on a different between the pre-pressure B and the molding material pressure A, wherein the pre-pressure addition means 2 is made non-contact with the direction means 3, a forward and backward driving motor 17 is disposed adjacent to a heating cylinder 10, and a screw connector 21 at the rear end of the screw 1 is spline-connected inside a rotating rotor of a screw rotating motor 12. According to the machine, the molding material pressure received by the screw can be accurately detected without being affected by the wear of the machine so as to properly control the axial pressure of the screw and to make the machine compact.
Abstract:
A mold-clamping control method for an injection molding machine includes the steps of detecting a value of a monitor item in a monitor region predetermined in relation to a mold closing operation in a mold clamping step; performing emergency processing when the detected value exceeds a threshold value; and performing an automatic setting operation. This automatic setting operation includes the steps of periodically detecting the value of the monitor item in the monitor region at predetermined sampling intervals to thereby obtain detection values in sampling order; repeating the step of periodical detection for each of a predetermined number of shots; obtaining threshold values and torque limit values for individual places of sampling order, on the basis of the detection values, by use of predetermined arithmetic expressions; and storing the obtained threshold values and torque limit values for control use.
Abstract:
There is provided a molding machine controlling unit and method capable or preventing the operation of a molding machine from suddenly stopping due to the temperature of an electric motor. The control unit comprises: a calculating part 40 for analyzing molding condition data to generate a command value for producing a torque to the rotating shafts of electric motors 71 through 73 of an injection molding machine and to calculate an effective value on the basis or the command value; an entry part 30 for entering a reference value, which is to be compared with the effective value, and the molding condition data; a storing part 35 for storing the reference value and the molding condition data; a display part 50 for displaying the effective value and the reference value; and driving parts 61 through 63 for entering the command value to drive the rotating shafts of the electric motors, wherein the effective value and the reference value are displayed as a standard for preparing the molding condition data so that the effective value does not exceed the reference value.
Abstract:
An injection molding machine includes a screw inserted in an injection cylinder and configured to be movable in an axial direction of the screw, a motor configured to move the screw, a torque detection unit configured to detect a torque of the motor, a position detection unit configured to detect a position of the screw, a motor drive control unit configured to drive the motor to thereby advance the screw to a foremost position in a direction of injection, a processor, and a memory. The processor and memory are configured to determine that unmelted resin remains inside the injection cylinder if the torque of the motor becomes equal to or greater than a limit torque while the screw is advancing to the foremost position.