Abstract:
The extruder includes: a cylinder having a first end portion and a second end portion respectively formed at two ends of the cylinder in an axial direction, and an ejection port formed in the first end portion; a screw including a shaft that is configured to rotate within the cylinder, and a screw blade that is provided on an outer circumferential surface of the shaft; a supplier that is attached to the second end portion side of the cylinder and is configured to supply a kneading target to an inside of the cylinder; and a plurality of protruding members that protrude from an inner wall surface of the cylinder.
Abstract:
An extruder is disclosed, and more particularly, a twin screw extruder for mixing, compounding, kneading and/or extruding of materials. The twin screw extruder includes a barrel assembly having a housing. The twin screw extruder further includes a first screw provided within the housing and comprising threads. The twin screw extruder further includes a second screw provided within the housing and comprising a threaded portion and a shaft portion devoid of threads. A drive system which drives the first screw and the second screw.
Abstract:
The kneading disc segment according to the present invention comprises plural disc sets each comprising two kneading discs and mounted on a kneading screw (3) which is for kneading a material while feeding the material to a downstream side. Disc sets each comprising a first kneading disc positioned on an upstream side and a second kneading disc, the second kneading disc being mounted continuously with and downstream of the first kneading disc so as to have a phase difference δ of an acute angle relative to the first kneading disc, are disposed continuously in the axial direction of the kneading screw. The first kneading discs in two continuous disc sets have a phase difference of 180°. With this construction, it is possible to attain a higher degree of kneading than in the conventional neutral kneading disc segment.
Abstract:
A method and apparatus for removing hot volatiles and moisture from particulate plastic material being fed for injection or extrusion molding by a plasticizing screw which rotates in a heated barrel. Flow control means, such as a conveying screw or rotary valve, drop the particulate material downward through a vertical feed passage extending to an opening in the barrel. At the same time, suction is applied to remove hot volatiles which are released through the opening in the barrel as the particulate plastic material is gradually melted as it is compressed by the screw. The rate of feed of the particulate material is restricted so that the barrel of the plasticizing screw is only partially filled near the opening, thereby improving the withdrawal of the gases from the barrel. The incoming particulate material is preheated by a continuous flow of hot air through it as it passes through a tubular guide member. The air flowing to the preheater passes through a heat exchanger where it recovers some waste heat from the hot gases withdrawn from the barrel to improve efficiency and reduce power costs.
Abstract:
Provided are a preparation method of a thermoplastic resin composition and a thermoplastic resin composition prepared therefrom. The preparation method includes: feeding a first thermoplastic resin in a molten state into a first hopper and feeding an impact reinforcing agent including a predetermined content of moisture into a second hopper, followed by kneading and extruding processes, and removing the moisture in a first vent port and a second vent port, wherein the first hopper, the first vent port, the second hopper, a first kneading zone, and the second vent port are sequentially formed in a moving direction of an extruder. The thermoplastic resin composition prepared therefrom can have improved appearance property and improved color property by removing moisture of an impact reinforcing agent added to the thermoplastic resin composition.
Abstract:
An extruder is disclosed, and more particularly, a twin screw extruder for mixing, compounding, kneading and/or extruding of materials. The twin screw extruder includes a barrel assembly having a housing. The twin screw extruder further includes a first screw provided within the housing and comprising threads. The twin screw extruder further includes a second screw provided within the housing and comprising a threaded portion and a shaft portion devoid of threads. A drive system which drives the first screw and the second screw.
Abstract:
A kneading segment includes plural wing portions integrally formed along an axis such that angles, around the axis, of the plural wing portions are shifted. At a part of a leading end of each wing portion where a wing leading end surface and a wing surface connect with each other, a first flow surface facilitates flow of material between the wing leading end surface and the wing surface. At a part of a base end of each wing portion where a wing surface and a wing side surface of another wing portion adjacent to each wing portion connect with each other, a second flow surface facilitates flow of material between the wing surface and the wing side surface. Since such a configuration prevents material from staying between parallel kneading segments, impurities are prevented and will not mix into normally kneaded material.
Abstract:
The present invention provides processes and systems for preparing self-supporting film-forming compositions. The process generally includes the steps of: (a) providing a self-supporting film-forming matrix including an edible polymer component and a fluid carrier selected from the group consisting of water organic solvents and combinations thereof: (b) degassing the matrix via the steps of: (i) directing a flow of the matrix having a first density through at least one volume reduction device: and (ii) increasing the density of the matrix to form a second density. The present invention further includes the addition of actives to the matrix so as to provide an active-containing degassed film forming matrix.
Abstract:
The present invention discloses a generic method for producing void and gas occlusion free materials, as well as apparatuses for batch and continuous production of same. This generic method can be utilized in the production of a wide variety of polymeric compounds and composites and specifically encompasses the two ends of the polymeric composite spectrum, that is, polymer concretes on the one hand, and fiber-reinforced polymer composites on the other. The composite materials of the present invention are characterized by visual count as being void and gas occlusion free to the level of 1 micron at 1250null magnification. Concomitantly, the invention produces useful polymer concrete materials which exhibit substantially improved integrity for easy machining at high speeds, and high dielectric and mechanical strength, as compared with composite materials produced by conventional methods. Thus, one particularly well-suited application for the materials of the present invention is the class of high voltage electrical insulating materials and insulators where the presence of voids, or gas occlusion flaws, may have deleterious effects, leading to their early failure.
Abstract:
The present invention discloses a generic method for producing void and gas occlusion free materials, as well as apparatuses for batch and continuous production of same. This generic method can be utilized in the production of a wide variety of polymeric compounds and composites and specifically encompasses the two ends of the polymeric composite spectrum, that is, polymer concretes on the one hand, and fiber-reinforced polymer composites on the other. The composite materials of the present invention are characterized by visual count as being void and gas occlusion free to the level of 1 micron at 1250× magnification. Concomitantly, the invention produces useful polymer concrete materials which exhibit substantially improved integrity for easy machining at high speeds, and high dielectric and mechanical strength, as compared with composite materials produced by conventional methods. Thus, one particularly well-suited application for the materials of the present invention is the class of high voltage electrical insulating materials and insulators where the presence of voids, or gas occlusion flaws, may have deleterious effects, leading to their early failure.