Abstract:
The collecting mechanism includes a holding unit and a controller. The holding unit has a pair of arms, and can sandwich a machined portion with the pair of arms. The holding unit can be switched between a holding state and a standby state. In the holding state, the pair of arms is closed to be in contact with the circumferential surface of the machined portion to sandwich the machined portion. In the standby state, the pair of arms is opened so as to stay near the circumferential surface of the machined portion with a space between the arms and the circumferential surface of the machined portion. The controller monitors whether cutting-off of the machined portion has been completed to keep the holding unit in the standby state before completion of the cutting-off and to switch the holding unit from the standby state to the holding state at the time of completion of the cutting-off.
Abstract:
A method for checking at least one subregion of a component, in particular a component of a turbomachine, including at least the steps of a) providing a blank; b) producing at least the subregion from the blank by machining the blank using at least one tool and using at least one force sensor-to record at least one force curve of at least one force acting during machining on the at least one tool; c) checking whether there is at least one deviation-of the at least one force curve from at least one predetermined target curve-of the at least one force curve, the at least one deviation-characterizing at least one material defect-contained in an unmachined segment of the subregion. A checking device for checking at least a subregion of a component is also provided.
Abstract:
The invention provides a control device comprising: an actual value obtaining part, obtaining a torque actual value and a velocity actual value, wherein the torque actual value represents a torque generated by the driving source and the velocity actual value represents a velocity of the motion body; an inferring part, which calculates an external force inferred value and a velocity inferred value every other operation period based on the torque actual value by using an operation formula of a predetermined model representing driving of the motion body, wherein the external force inferring value represents an external force generated by the control system; and an output part, evaluating a reliability of the external force inferred value based on the velocity inferred value calculated together if the inferring part calculates the external inferred value, and effectively outputting the external force inferred value when it is judged that there is a designated reliability.
Abstract:
In a machine tool in which a spindle head is driven by a spindle head drive motor via a ball screw/nut mechanism, tools of different weights are each installed in the spindle head beforehand, a load torque applied to the spindle head drive motor is obtained, and relational data between the tool weight and the load torque is stored. When each tool is installed in the spindle head, the weight of the tool is estimated from, the load torque detected by a load torque detection unit while the spindle head is stopped, and the relational data between the tool weight and load torque.
Abstract:
A method and apparatus is provided of detecting tool abnormality in a machine tool. Permissible minimum and maximum values of load current in a real cutting section are determined for a spindle motor and a servomotor during normal operation of the machine tool. The load current of the spindle motor and the servomotor is measured while the machine tool is operated. The load current measured in a real cutting section other than a non-cutting section is extracted by way of filtering the load current measured. A judgment is made as to whether the extracted load current is within a range between the minimum and maximum values. Occurrence of the tool abnormality is confirmed if the extracted load current falls outside the range. This enables the machine tool to detect not only overload condition due to excessive wear of a tool but also non-load condition induced by a tool breakage.
Abstract:
A method and apparatus is provided of detecting tool abnormality in a machine tool. Permissible minimum and maximum values of load current in a real cutting section are determined for a spindle motor and a servomotor during normal operation of the machine tool. The load current of the spindle motor and the servomotor is measured while the machine tool is operated. The load current measured in a real cutting section other than a non-cutting section is extracted by way of filtering the load current measured. A judgment is made as to whether the extracted load current is within a range between the minimum and maximum values. Occurrence of the tool abnormality is confirmed if the extracted load current falls outside the range. This enables the machine tool to detect not only overload condition due to excessive wear of a tool but also non-load condition induced by a tool breakage.
Abstract:
Machine operating conditions can be monitored by analyzing, in either the time or frequency domain, the spectral components of the motor current. Changes in the electric background noise, induced by mechanical variations in the machine, are correlated to changes in the operating parameters of the machine.
Abstract:
A method is disclosed of determining worn rotary tools during machining operations, comprising: (a) establishing the steady-state dominant tool force level required to (i) carry out a rotary machining operation at a given set of cutting conditions in the abrasive wear regime, (ii) using a known worn rotary tool with a given geometry, and (iii) using a workpiece of given material; (b) supporting another rotary tool of the same given geometry in a holder for being power driven for rotation, the holder having means to impart a signal in response to exceeding a predetermined force level calibrated to be just below the steady-state force level of the worn tool; and (c) while employing the support tool, initiating an automatic tool change in response to any signal imparted by the tool support.
Abstract:
There are provided a load state diagnosis device and a load state diagnosis method for a servomotor. A PLC diagnoses the load state of the servomotor which rotationally drives a rotary tool in a predetermined rotational drive direction at a constant speed. The PLC includes a detection part that detects the rotational direction of a torque acting on the servomotor, a determination part that determines whether the rotational direction of the torque detected by the detection part is consistent with the predetermined rotational drive direction, and a load index output part that outputs a load index indicating the load state of the servomotor based on a determination result of the determination part.
Abstract:
A system for detecting a damaged tool of multi-axis head machining equipment includes multi-axis head machining equipment, and a damaged tool detecting device connected to the multi-axis head machining equipment to detect a damaged tool, the damaged tool detecting device being configured to measure a current and a current change amount of the multi-axis head machining equipment to monitor a machining load, and a derivative and machining energy of the machining load, so as to detect whether there is an abnormality in a plurality of tools mounted on a multi-axis head during machining.