Abstract:
The die casting machine comprises a mold closing actuator capable of selectively inducing a closing pressure on first and second platens for forcing them towards a closed position in which their mold portions are pressed against each other along a parting line. An injection sleeve is movable relative to the mold portions between a distal position in which the injection sleeve and the mold portions are spaced apart; and an injection position in which the injection sleeve engages the mold portions at an inlet opening when the first and second platens are in their closed position. The injection sleeve applies a transverse contact pressure when it engages the mold portions. The closing pressure is unevenly distributed on the platens so as to compensate the transverse contact pressure to have a resulting effective molding pressure on the mold portions that is substantially evenly distributed across the parting line.
Abstract:
The mold clamping device is provided with a first platen to which a stationary mold is attached. A movable mold unit is capable of approaching and moving away from the stationary mold. A second platen is linked to the first platen via a tie bar. When the movable mold unit and the stationary mold are closed, a wedge member is driven onto the movable mold unit to generate mold clamping force. The second platen has a pressure receiving surface. The pressure receiving surface receives, through the wedge member, mold opening force that is generated by filling, with a molding material, the stationary mold and the movable mold unit that are in the closed state.
Abstract:
A mold fastening device has a fixed die plate, a rear plate, a movable die plate that can move back and forth, a toggle mechanism, and a drive motor that drives a cross-head. The position where the cross-head should be stopped is associated with the rate at which to accelerate the cross-head from that position or the rate at which to decelerate the cross-head to that position. The cross-head is operated at an acceleration that corresponds to that position. The drive motor is thereby driven at a constant output torque, regardless of the position of the movable die plate. Further, the time for opening and closing metal molds can be shortened.
Abstract:
A mold fastening device has a fixed die plate, a rear plate, a movable die plate that can move back and forth, a toggle mechanism, and a drive motor that drives a cross-head. The position where the cross-head should be stopped is associated with the rate at which to accelerate the cross-head from that position or the rate at which to decelerate the cross-head to that position. The cross-head is operated at an acceleration that corresponds to that position. The drive motor is thereby driven at a constant output torque, regardless of the position of the movable die plate. Further, the time for opening and closing metal molds can be shortened.
Abstract:
An apparatus and method for connecting a mining dump bucket to a set of drag chains and a set of dump ropes is provided. A metallic nugget is fused to a drag rope. The metallic nugget is then inserted into a novel coupler or socket attached to a dump bucket. Also provided is a set of frustoconical wedges adjacent the nugget and a frustoconical receiver used to secure the rope to the coupler or socket.
Abstract:
The present invention aims to stably maintain the posture of a crosshead by means of guide bars without an increase in the size of a link housing or tie bars. An opening/closing apparatus according to the present invention includes: a pressure-receiving plate (14); a fixed platen (12) to which a fixed mold (18) is to be mounted; a frame (11) on which the pressure-receiving plate (14) and the fixed platen (12) are installed; and a movable platen (16) which is movable on the frame (11) and to which a movable mold (19) is to be mounted. The opening/closing apparatus also includes: a crosshead movement mechanism including guide members (50) extending from the pressure-receiving plate (14), and a crosshead (25) whose movement is guided by the guide members (50); an opening/closing mechanism for opening/closing a mold, including a toggle link mechanism (22) connecting the pressure-receiving plate (14), the crosshead (25) and the movable platen (16), and a drive mechanism for driving the toggle link mechanism (22); and a guide member support mechanism for supporting the guide members (50). The guide member support mechanism has support portions (56) which are slidable on the upper surface of the frame (11).
Abstract:
A casting and molding equipment for producing a casting of amorphous alloy, including an injection system, an alloy melting system, a material feeding system, a mold system, a vacuum system, a protective gas supply system, and a vacuum chamber. The alloy melting system is disposed in the vacuum chamber and includes a melting crucible and a heating unit. The heating unit is disposed out of the melting crucible. The injection system includes an injection tube, an injection mechanism, a plunger rod, and an injection piston disposed at one end of the plunger rod. The injection mechanism is adapted to control the injection piston to move in the injection tube. The injection tube includes a pouring gate. The plunger rod, the injection tube, and the injection piston are all disposed in the vacuum chamber. The plunger rod and the vacuum chamber are vacuum sealed via a bellows.
Abstract:
A mold clamping device includes a fixed platen on which a fixed mold is disposed, a movable platen on which a movable mold that defines a cavity along with the fixed mold is disposed, a tie bar configured to resist a mold clamping force that is generated between the fixed platen and the movable platen, and a half nut opening and closing device configured to grip the tie bar, thereby locking the movable platen and the tie bar, in which the half nut opening and closing device includes half nuts configured to grip the tie bars, an actuator which is disposed on the movable platen and configured to move the half nuts back and forth with respect to the tie bars, and a clevis configured to connect the actuator to the half nuts so as to allow the actuator to swing with respect to the gripping member.
Abstract:
A mold clamping device includes a fixed platen on which a fixed mold is disposed, a movable platen on which a movable mold that defines a cavity along with the fixed mold is disposed, a tie bar configured to resist a mold clamping force that is generated between the fixed platen and the movable platen, and a half nut opening and closing device configured to grip the tie bar, thereby locking the movable platen and the tie bar, in which the half nut opening and closing device includes half nuts configured to grip the tie bars, an actuator which is disposed on the movable platen and configured to move the half nuts back and forth with respect to the tie bars, and a clevis configured to connect the actuator to the half nuts so as to allow the actuator to swing with respect to the gripping member.
Abstract:
Provided is a mold clamping device that saves a space, has a light machine weight and requires low manufacturing cost in an injection molding machine, a diecast machine, and the like. The mold clamping device includes: a stationary platen having a stationary mold; a movable platen having a movable mold; a plurality of tie bars supported by the stationary platen; end blocks provided in the same number as the tie bars, which is penetrated by the tie bars and coupled with the movable platen with toggle link mechanisms; split nuts supported by the end blocks and capable of being engaged with and disengaged from the tie bars; a mold opening-closing drive unit for opening and closing the movable platen, the end blocks, and the toggle link mechanisms; and a cross head for operating the toggle link mechanisms to generate a mold clamping force.