Abstract:
In general, the subject matter described herein relates to wettable materials that can be used to expose a liquid phase to a gas phase. An example method includes: providing a material including a polymeric substrate and at least one of: a silicate coating disposed over the polymeric substrate; or a polar mineral additive dispersed within the polymeric substrate at a loading from about 1% to about 25%, by weight; and using the material in a chemical process in which the material is at least partially covered by a liquid phase and the liquid phase is exposed to a gas phase.
Abstract:
A method of operating a multi-phase downflow reactor so as to induce a pulsing flow regime is disclosed. The pulse may be induced by increasing the gas rate while maintaining the liquid rate until a pressure drop sufficient to induce the pulse flow is achieved. The method is particularly useful in the sulfuric acid catalyzed alkylation of olefins in a reactor packed with a stainless steel/polypropylene mesh.
Abstract:
A catalyst element includes a porous housing; a filter core disposed within the housing; and a filler material comprising a catalyst particle, a redox particle, an oxidizing particle, or a combination comprising at least one of the foregoing particles, wherein the filler material is disposed within the housing; wherein the catalyst element comprises a plurality of tortuous flow paths, through which a reactive mixture may flow and contact at least a portion of each of the housing, filter core, and filler material. The catalyst element may be useful in a variety of chemical processes including hydrogenation, dehydrogenation, hydrogenolysis, oxidation, reduction, alkylation, dealkylation, carbonylation, decarbonylation, coupling, isomerization, amination, deamination, or hydrodehalogenation.
Abstract:
An internal static mixing system such as a disperser of mesh wire or expanded metal co-knit with a multi filament material selected from inert polymers, catalytic polymers, catalytic metals or mixtures in combination with a vertical reactor having a reaction zone and the disperser disposed in said reaction zone, particularly for carrying out paraffin alkylation using acid catalyst is disclosed. The wire mesh provides the structural integrity of the system as well as the open space required in reactors for the movement of vapors and liquids though the system. The disperser may be in sheets, bundles or bales or positioned within a frame.
Abstract:
Carboxylic acid ester is produced by esterification of carboxylic acid and an alcohol in a catalytic reaction zone of a first column at a pressure not greater than ambient pressure. The resultant sump product is distilled in a reaction zone of a second column at a pressure greater than 1.5 bar to obtain a second liquid sump product containing carboxylic acid ester with an carboxylic acid content of less than 100 ppm by weight at a lower end of the column. Neutralization of the second liquid sump product with a base is not required.
Abstract:
The present invention concerns a method for the continuous production of biodiesel from biogenic fat- or oil-containing starting mixtures with a high content of free fatty acids as well as a device for producing biodiesel.
Abstract:
A method of operating a multi-phase downflow reactor so as to induce a pulsing flow regime is disclosed. The pulse may be induced by increasing the gas rate while maintaining the liquid rate until a pressure drop sufficient to induce the pulse flow is achieved. The method is particularly useful in the sulfuric acid catalyzed alkylation of olefins in a reactor packed with a stainless steel/polypropylene mesh.
Abstract:
A description is given of a structured packing for a column for carrying out a distillation or reactive distillation which is formed from a three-dimensional body which substantially completely fills the column cross section and which was obtained from two or more differently structured webs of a nonwoven material by winding up or laying one on top of the other and is chemically and mechanically stable under the processing conditions of distillation or reactive distillation.
Abstract:
A tower packing element, a tower packing, a packing tower, and a mixer comprising the tower packing element are provided. The tower packing element are manufactured by a deformed plate and comprises a plurality of strip assemblies arranged along a longitudinal direction of the tower packing element and a connecting plate portion connected between adjacent strip assemblies. Each of the strip assemblies defines a central passage therein, and the central passage is extended in a lateral direction of the tower packing element. The connecting plate portion is extended along the lateral direction of the tower packing element. The adjacent strip assemblies and the connecting plate portion connected therebetween define a side passage parallel to the central passage.
Abstract:
A method of mass transfer includes the steps of: supplying a first fluid and a second fluid into a mass transfer apparatus, wherein the mass transfer apparatus includes a vessel which has a head region, a base region and a mass transfer region, wherein the first fluid is brought into contact with the second fluid at least in the mass transfer region, wherein the mass transfer region is arranged between the head region and the base region and the mass transfer region includes a structured packing which includes a plurality of neighboring layers of fabric which includes fiber strands of a non-metallic material. The mass transfer apparatus is operated at a fluid load of at most 3 m3/m2/h. The fabric of the structured packing includes fiber strands of a non-metallic material which are formed as weft threads, wherein the weft threads have a yarn count of at least 100 g/1000 m and the weft threads include at least 20 yarns/25.4 mm.