Abstract:
A hybrid Contact tray for a mass transfer column is provided. The tray has a deck for passage of liquid along a liquid flow path thereon. The deck also has a plurality of orifices for passage of ascending vapor through the tray deck. The contact tray includes a cross-current vapor-liquid mixing section having a first portion of the plurality of orifices and a co-current vapor-liquid mixing section having at least one co-current mixing device associated with a second portion of the plurality of orifices. The co-current mixing device includes a conduit having: a vapor inlet in fluid communication with one or more of the second portion of orifices; a froth inlet in fluid communication with the liquid flow path; a fluid outlet; and a packing material within a co-current flow path of vapor and liquid within the conduit disposed after the vapor and froth inlets and before the fluid outlet.
Abstract:
A hybrid contact tray for a mass transfer column is provided. The contact tray includes a tray deck for passage of liquid along a liquid flow path thereon. The tray deck has a plurality of orifices for passage of ascending vapor through the tray deck, a cross-current vapor-liquid mixing section having a first portion of the plurality of orifices, and a co-current vapor-liquid mixing section including at least one co-current mixing device associated with a second portion of the plurality of orifices. The tray deck also has features capable of altering liquid head levels with respect to the plurality of orifices such that the liquid head level within the co-current vapor-liquid mixing section is greater than the liquid head level within the cross-current vapor-liquid mixing section.
Abstract:
A system for contacting gases and liquids comprises a vessel containing inert particles, wherein the total volume of the inert particles is from 1 to 20% of the total working volume of the vessel.
Abstract:
The invention provides a microbubble generation system with increased efficiency and flexibility compared to known systems. Further, the invention provides a method of microbubble generation. In particular, invention relates to increasing the efficiency of a fermentation reaction by reducing bubble size and increasing gas absorption into a liquid fermentation broth.
Abstract:
Systems and methods are provided for reducing maldistribution of liquids and vapors in packed towers. An exemplary separation system includes a separation tower including at least two packed beds, and a vapor redistribution plate disposed between two sequentially disposed packed beds, wherein the vapor redistribution plate is configured to mix a vapor from a lower packed bed before introducing the vapor into an upper packed bed.
Abstract:
A packing element (1) for use in mass and/or heat transfer processes through which at least one liquid may flow, wherein the packing element (1): has an outer surface (2) comprising three or more outer arched rib elements (21) and two outer connecting edge elements (22), optionally has an inner surface (3) comprising optional inner arched rib elements (31), wherein the element 1 is substantially spherical or substantially ellipsoidal, and wherein the outer connecting edge elements (22) and the outer arched rib elements (21) and optional inner arched rib elements (31) are embodied such that the total projected area (4) of the packing element (1) when viewed in any direction (7), preferably a radial direction (5) or optional axial direction (6), is partially open due to the presence of an open projected area (41), wherein it is open to an extent that ranges from about 15 to about 50, preferably about 17 to about 40, more preferably about 18 to about 35, most preferably about 20 to about 30% of the total projected area (4). The invention further relates to a method for producing said element (1). The present invention further relates also to a column or reactor comprising a bed of said elements (1), a method to prepare said bed, and the use of the element (1) or column or reactor in a mass transfer and/or heat transfer process and/or in a chemical reaction.
Abstract:
A multi-stage aeration apparatus includes at least two vertically oriented aeration modules, Each aeration module defines a vertically elongated aeration chamber having a top inlet and a bottom outlet. The bottom outlet of each of the aeration modules feeds a fluid stream comprising liquid and gas into the top inlet of an underlying one of the aeration modules. Each aeration module has an aeration head connected to the top inlet, such that the fluid stream passing through the top inlet into the aeration chamber must pass through the aeration head, the aeration head aerating the liquid with the gas in the fluid stream.
Abstract:
The present invention relates to liquid to air evaporative heat exchange apparatus, mainly for cooling towers, air conditioning units, and humidifies alike. The present invention incorporate an evaporative module embedded with a liquid delivery system through all of its layers. Such a design allows for an even and smooth liquid distribution, while at the same time maximized the duration and surface area for heat exchange to take place. The evaporative module of the present invention can be sealed off at various sections to redirect air flow. Such a design serves dual functions as a drift eliminator or regulator.
Abstract:
A fluid treatment apparatus comprises a fluid vessel defining first and second fluid chambers. A fluid inlet is provided for delivering a fluid to be treated into the first fluid chamber. One or more nozzle assemblies are provided for fluid communication between the first and second fluid chambers, wherein said nozzle assemblies are adapted to facilitate mixing of a gas with said fluid. The second fluid chamber is adapted to accommodate a fluid treatment process therein, including a floatation treatment. One specific use of the fluid treatment apparatus includes separating oil from water, particularly water produced from a subterranean formation.
Abstract:
A separations tray assembly for use in a fluid-fluid exchange column. The separations tray assembly is of the type where a first fluid, in a continuous phase, is directed across successive trays in a serpentine flow path. A second fluid, in a dispersed phase ascends through apertures in the tray thus inducing interaction and mass transfer with the first fluid. In accordance with one aspect of the present invention, the separations tray further includes a diffuser skirt, having apertures disposed therein, operatively coupled to a fluid channel. The diffuser skirt is operable to direct the first fluid to cover substantially an entire volumetric cross-flow window between successive separations trays and to induce stirring and mixing of the first fluid and the second fluid to effect efficient mass transfer.