Abstract:
The invention provides an apparatus for generating mist, comprising: a container adapted to accommodate a liquid, the container comprising an inlet for receiving an incoming fluid stream into the container, and an outlet via which an outgoing fluid stream exits the container; at least one agitating means arranged in the container for agitating the accommodated liquid to generate droplets of the liquid; wherein the agitating means is arranged to be driven by the incoming fluid stream, such that the generated liquid droplets are caused by the incoming fluid stream to form the outgoing fluid stream, and subsequently, exit the container. The invention also provides a system for generating mist, comprising: a plurality of the above described apparatuses, comprising at least a first apparatus having a first inlet and a first outlet, and a second apparatus having a second inlet and a second outlet; wherein the first outlet is adapted to be connected with the second inlet to thereby allow fluid communication between the first apparatus and the second apparatus.
Abstract:
A heat exchange apparatus is provided with an indirect evaporative heat exchange section. The indirect evaporative heat exchange section is comprised of a series of serpentine tubes, and an evaporative liquid is passed downwardly onto the indirect heat exchange section. The evaporative liquid is collected in a sump and then pumped upwardly to be distributed again across the indirect heat exchange section. An improved heat exchange apparatus is provided with an indirect evaporative heat exchange section consisting of a series of serpentine tubes comprised of tube runs both of normal and increased height between tube runs. A direct heat exchange section may be provided in the increased vertical spacing between tube runs.
Abstract:
A lean absorbent liquid supplier, disposed inside at an upper portion in the absorption tower housing, supplies a lean absorbent liquid into the housing. An absorption tower rectifier, disposed under the lean absorbent liquid supplier in the absorption tower housing, rectifies flow of the lean absorbent liquid supplied downwardly in the absorption tower housing, and dissolves an object gas in the lean absorbent liquid to generate a rich absorbent liquid. An absorbent liquid chamber, disposed below the absorption tower rectifier in the absorption tower housing temporarily stores the rich absorbent liquid therein. An absorption separator is disposed between the absorption tower rectifier and the absorbent liquid chamber in the absorption tower housing. The object gas is supplied to the absorbent liquid chamber.
Abstract:
The invention relates to a collector/distributor/exchanger tray 2 of a column for heating and/or material exchange between a gas and a liquid, comprising liquid passage means 14 and gas passage casings 4 to which gas bubbling means 15 are attached. The bubbling means allow an emulsion zone to be created in the upper part of distributor/exchanger tray 2. The invention also relates to an exchange column comprising the distributor tray and to the use of the same.
Abstract:
Systems and methods for gas processing are described that utilize two or more cells that are fluidly coupled to one another by a common liquid space. Via the common liquid space, each of the cells can be coupled to a fluid outlet. The cells can each include an absorber and/or other gas processing equipment. A feed gas can be separately fed to each of the cells for processing. The cells can be independently operable, such that not all of the cells must be operated simultaneously.
Abstract:
A cost-effective cooling tower splash fill bar support assembly that includes a plurality of perforated substantially planar components supporting a plurality of splash fill bars extending therethrough in a manner that distributes stress over a relatively large area, typically by using a splash fill bar support. Also, a method of forming a cooling tower splash fill bar support assembly including a splash fill bar support assembly having substantially planar components and splash fill bar supports.
Abstract:
A mixer is disclosed for use in a reductant dosing system. The mixer may have an impingement floor located within an intended fluid injection path and generally parallel with a flow direction through the mixer. The mixer may also have a first side wall connected along a lengthwise edge of the impingement floor, a second side wall connected along an opposing lengthwise edge of the impingement floor, and a plurality of shelves extending between the first and second side walls. The plurality of shelves each may include a plurality of vanes that promote mixing of an injected fluid. One or more of the plurality of shelves may extend different distances upstream opposite the flow direction.
Abstract:
The invention is a column contact apparatus for contacting gas with liquid in an upflow in a column container, containing two or more stages of honeycomb structural bodies in the column container in a vertical direction, a space portion formed between the respective stages of the honeycomb structural bodies and a flow-aligning portion as back-flow prevention means provided in the space portion between the respective stages such that the flow-aligning portion is not brought into contact with the honeycomb structural bodies, the flow-aligning portion including a plurality of holes with hole diameters of 0.5 mm to 8 mm.
Abstract:
Condensing apparatuses and their use in various heat and mass exchange systems are generally described. The condensing apparatuses, such as bubble column condensers, may employ a heat exchanger positioned external to the condensing vessel to remove heat from a bubble column condenser outlet stream to produce a heat exchanger outlet stream. In certain cases, the condensing apparatus may also include a cooling device positioned external to the vessel configured and positioned to remove heat from the heat exchanger outlet stream to produce a cooling device outlet stream. The condensing apparatus may be configured to include various internal features, such as a vapor distribution region and/or a plurality of liquid flow control weirs and/or chambers within the apparatus having an aspect ratio of at least 1.5. A condensing apparatus may be coupled with a humidifier to form part of a desalination system, in certain cases.
Abstract:
The present invention relates to liquid to air evaporative heat exchange apparatus, mainly for cooling towers, air conditioning units, and humidifies alike. The present invention incorporate an evaporative module embedded with a liquid delivery system through all of its layers. Such a design allows for an even and smooth liquid distribution, while at the same time maximized the duration and surface area for heat exchange to take place. The evaporative module of the present invention can be sealed off at various sections to redirect air flow. Such a design serves dual functions as a drift eliminator or regulator.