摘要:
The present disclosure relates to a bioimplantable device having a superhydrophobic surface and a method for manufacturing the same. The bioimplantable device, which includes a biocompatible substrate and a superhydrophobic nanostructure formed on the surface of the biocompatible substrate, is capable of preventing blood clot formation by blocking contact with proteins, water, blood platelets, etc. when used for blood vessels.
摘要:
Disclosed in one embodiment is a medical device including an expandable metal vascular stent including at least one surface. A coating layer including parylene or a parylene derivative is positioned on the at least one surface. At least one layer comprising a bioactive agent is positioned on the coating layer, wherein the bioactive agent is selected from the group consisting of an immunosuppressive agent, anti-inflammatory agent and an anti-proliferative agent. A porous layer is positioned on the at least one layer including a bioactive agent, wherein upon implantation into a patient, the porous layer controls release of the bioactive agent from the at least one layer including the bioactive agent.
摘要:
A coated implantable medical device 10 includes a structure 12 adapted for introduction into the vascular system, esophagus, trachea, colon, biliary tract, or urinary tract; at least one coating layer 16 posited on one surface of the structure; and at least one layer 18 of a bioactive material posited on at least a portion of the coating layer 16, wherein the coating layer 16 provides for the controlled release of the bioactive material from the coating layer. In addition, at least one porous layer 20 can be posited over the bioactive material layer 18, wherein the porous layer includes a polymer and provides for the controlled release of the bioactive material therethrough. Preferably, the structure 12 is a coronary stent. The porous layer 20 includes a polymer applied preferably by vapor or plasma deposition and provides for a controlled release of the bioactive material. It is particularly preferred that the polymer is a polyamide, parylene or a parylene derivative, which is deposited without solvents, heat or catalysts, and merely by condensation of a monomer vapor.
摘要:
A coated implantable medical device includes a structure adapted for introduction into the vascular system, esophagus, trachea, colon, biliary tract, or urinary tract; at least one coating layer posited on one surface of the structure; and at least one layer of a bioactive material posited on at least a portion of the coating layer. Preferably, the structure is a stent graft.
摘要:
Methods of making coated implantable medical devices are provided. The methods include positioning a first layer comprising a bioactive on at least a portion of a structure, and positioning at least one porous layer over the first layer. The at least one porous layer has a thickness adequate to provide a controlled release of the bioactive.
摘要:
Methods of making coated implantable medical devices are provided. The methods include positioning a first layer comprising a bioactive on at least a portion of a structure, and positioning at least one porous layer over the first layer. The at least one porous layer has a thickness adequate to provide a controlled release of the bioactive.
摘要:
Cardiovascular and other medical implants fabricated from low-modulus Ti--Nb--Zr alloys to provide enhanced biocompatibility and hemocompatibility. The cardiovascular implants may be surface hardened by oxygen or nitrogen diffusion or by coating with a tightly adherent, hard, wear-resistant, hemocompatible ceramic coating. The cardiovascular implants include heart valves, total artificial heart implants, ventricular assist devices, vascular grafts, stents, electrical signal carrying devices such as pacemaker and neurological leads, defibrillator leads, and the like. It is contemplated that the Ti--Nb--Zr alloy can be substituted as a fabrication material for any cardiovascular implant that either comes into contact with blood thereby demanding high levels of hemocompatibility, or that is subject to microfretting, corrosion, or other wear and so that a low modulus metal with a corrosion-resistant, hardened surface would be desirable.
摘要:
Medical leads fabricated from low-modulus Ti-Nb-Zr alloys to provide enhanced biocompatibility and hemocompatibility. The medical leads may be surface hardened by oxygen or nitrogen diffusion or by coating with a tightly adherent, hard, wear-resistant, hemocompatible ceramic coating. It is contemplated that the Ti-Nb-Zr alloy can be substituted as a fabrication material for any portion of a medical lead that either comes into contact with blood thereby demanding high levels of hemocompatibility, or that is subject to microfretting, corrosion, or other wear and so that a low modulus metal with a corrosion-resistant, hardened surface would be desirable.
摘要:
Ventricular assist devices fabricated from low-modulus Ti--Nb--Zr alloys to provide enhanced biocompatibility and hemocompatibility. The ventricular assist devices may be surface hardened by oxygen or nitrogen diffusion or by coating with a tightly adherent, hard, wear-resistant, hemocompatible ceramic coating. It is contemplated that the Ti--Nb--Zr alloy can be substituted as a fabrication material for any portion of a ventricular assist device that either comes into contact with blood thereby demanding high levels of hemocompatibility, or that is subject to microfretting, corrosion, or other wear and so that a low modulus metal with a corrosion-resistant, hardened surface would be desirable.
摘要:
A coated implantable medical device 10 includes a structure 12 adapted for introduction into the vascular system, esophagus, trachea, colon, biliary tract, or urinary tract; at least one layer 18 of a bioactive material positioned over the structure 12; and at least one porous layer 20 positioned over the bioactive material layer 18. Preferably, the structure 12 is a coronary stent, and the bioactive material is at least one of heparin, dexamethasone or a dexamethasone derivative. The device 10 includes layers 18 and 22 of heparin and dexamethasone, the layer 22 of dexamethasone being positioned above the layer 18 of heparin. The layers of bioactive material also can be individual materials or a combination of different materials. Unexpectedly, the more soluble heparin markedly promotes the release of the less soluble dexamethasone above it. The porous layer 20 is composed of a polymer applied by vapor or plasma deposition and provides a controlled release of the bioactive material. It is particularly preferred that the polymer is a polyimide, parylene or a parylene derivative, which is deposited without solvents, heat or catalysts, merely by condensation of a monomer vapor.