Abstract:
Described herein are compositions having a peptide sequence that includes at least one bone targeting moiety, wherein the bone targeting moiety is bonded to the peptide sequence by a linker, wherein the peptide sequence is calcitonin, and wherein the composition is neutral or a pharmaceutically acceptable salt or ester thereof. In one aspect, calcitonin inhibits or slows osteoclast mediated resorptive bone loss. The compounds described herein can be used in a number of therapeutic applications including treating or preventing conditions associated with bone loss, which include, but are not limited to, osteoporosis, Paget's disease, osteolytic tumors, Rheumatoid Arthritis, Psoriatic Arthritis, Ankylosing Spondylitis, Osteoarthritis, osteopenia, and hypercalcemia. Also described herein are the methods of making these compositions that prevent or treat conditions associated with bone loss and methods of preventing bone fractures.
Abstract:
A method for treating or preventing cardiovascular pathologies by administering a compound of the formula (I): ##STR1## wherein Z is C.dbd.O or a covalent bond; Y is H or O(C.sub.1 -C.sub.4)alkyl, R.sup.1 and R.sup.2 are individually (C.sub.1 -C.sub.4)alkyl or together with N are a saturated heterocyclic group, R.sup.3 is ethyl or chloroethyl, R.sup.4 is H or together with R.sup.3 is --CH.sub.2 --CH.sub.2 -- or --S--, R.sup.5 is I, O(C.sub.1 -C.sub.4)alkyl or H and R.sup.6 is I, O(C.sub.1 -C.sub.4)alkyl or H with the proviso that when R.sup.4, R.sup.5, and R.sup.6 are H, R.sup.3 is not ethyl; or a pharmaceutically acceptable salt thereof, effective to activate or stimulate production of TGF-beta to treat and/or prevent conditions such as atherosclerosis, thrombosis, myocardial infarction, and stroke is provided. Useful compounds include idoxifene and salts thereof. Further provided is a method for identifying a compound that is a TGF-beta activator or production stimulator is provided. Another embodiment of the invention is an assay or kit to determine TGF-beta in vitro. Also provided is a therapeutic method comprising inhibiting smooth muscle cell proliferation associated with procedural vascular trauma employing the administration of tamoxifen or structural analogs thereof, including compounds of formula (I).
Abstract:
A newly discovered property of thermal hysteresis proteins is the interaction of these proteins with cell membranes and thus with cells themselves, protecting cells and their membranes from damage which they would otherwise suffer upon exposure to non-physiological conditions such as temperature abnormalities, including both hyperthermic, hypothermic and sub-freezing temperatures. Improved rates of cell viability are observed over a wide range of conditions which do not involve ice formation, including temperatures above the freezing range as well as temperatures below the freezing range but in vitrification conditions. Heretofore the only known property of these proteins was their ability to interact with ice crystals. In conditions in which ice crystals are formed, it is further discovered that use of the proteins with human cells at the concentrations in which they naturally occur in the source organisms results in aggravating the injury to the cells rather than reducing it, but that the injury is lessened, and the survival rate improved, by using low concentrations. The proteins thus offer benefits in the preservation and improved viability of cell suspensions, tissues and whole organs. The proteins are further discovered to have the ability to block ion channels in mammalian cell membranes, thereby providing a further utility in the treatment of disease conditions.
Abstract:
Synthetic comb copolymers which elicit controlled cellular response, methods of applying these polymers to various surfaces, and methods of using the polymers for modifying biomaterial surfaces, in tissue engineering applications and as drug delivery devices are provided. The comb copolymers are comprised of hydrophobic polymer backbones and hydrophilic, non-cell binding side chains which can be end-capped with cell-signaling ligands that guide cellular response. By mixing non-cell binding combs with ligand-bearing combs, the surface concentration and spatial distribution of one or more types of ligands, including adhesion peptides and growth factors, can be tuned on a surface to achieve desired cellular response. In one embodiment, the combs are used as stabilizing agents for dispersion polymerization of latexes. The comb-stabilized latexes can be applied to substrates by standard coating operations to create a bioregulating surface, or used as drug delivery agents. In another embodiment, the combs can be blended in small quantities to a hydrophobic matrix polymer and processed to affect the surface segregation of the comb. The comb copolymers are formed in one embodiment by providing a biodegradable polyester backbone that includes reactive groups, and reacting the reactive groups in the backbone with reactive chain ends on a low molecular weight hydrophilic polymer. In another embodiment, non-biodegradable comb copolymers are formed by free radical synthesis of a hydrophobic monomer and a hydrophilic macromonomer. In all of the above embodiments, a portion of the hydrophilic polymer side chains can be covalently coupled to cell-signaling ligands such as adhesion peptides or growth factors to control cellular response.
Abstract:
Synthetic comb copolymers which elicit controlled cellular response, methods of applying these polymers to various surfaces, and methods of using the polymers for modifying biomaterial surfaces, in tissue engineering applications and as drug delivery devices are provided. The comb copolymers are comprised of hydrophobic polymer backbones and hydrophilic, non-cell binding side chains which can be end-capped with cell-signaling ligands that guide cellular response. By mixing non-cell binding combs with ligand-bearing combs, the surface concentration and spatial distribution of one or more types of ligands, including adhesion peptides and growth factors, can be tuned on a surface to achieve desired cellular response. In one embodiment, the combs are used as stabilizing agents for dispersion polymerization of latexes. The comb-stabilized latexes can be applied to substrates by standard coating operations to create a bioregulating surface, or used as drug delivery agents. In another embodiment, the combs can be blended in small quantities to a hydrophobic matrix polymer and processed to affect the surface segregation of the comb. The comb copolymers are formed in one embodiment by providing a biodegradable polyester backbone that includes reactive groups, and reacting the reactive groups in the backbone with reactive chain ends on a low molecular weight hydrophilic polymer. In another embodiment, non-biodegradable comb copolymers are formed by free radical synthesis of a hydrophobic monomer and a hydrophilic macromonomer. In all of the above embodiments, a portion of the hydrophilic polymer side chains can be covalently coupled to cell-signaling ligands such as adhesion peptides or growth factors to control cellular response.
Abstract:
A composition for the transfection of higher eucaryotic cells, comprising complexes of nucleic acid, a substance having an affinity for nucleic acid and optionally an internalizing factor, contains an endosomolytic agent, e.g. a virus or virus component, which may be conjugated. The endosomolytic agent, which is optionally part of the nucleic acid complex, is internalized into the cells together with the complex and releases the contents of the endosomes into the cytoplasm, thereby increasing the gene transfer capacity. Pharmaceutical preparations, transfection kits and methods for introducing nucleic acid into higher eucaryotic cells by treating the cells with the composition are also disclosed.
Abstract:
A composition for the transfection of higher eucaryotic cells, comprising complexes of nucleic acid, a substance having an affinity for nucleic acid and optionally an internalizing factor, contains an endosomolytic agent, e.g. a virus or virus component, which may be conjugated. The endosomolytic agent, which is optionally part of the nucleic acid complex, is internalized into the cells together with the complex and releases the contents of the endosomes into the cytoplasm, thereby increasing the gene transfer capacity. Pharmaceutical preparations, transfection kits and methods for introducing nucleic acid into higher eucaryotic cells by treating the cells with the composition are also disclosed.
Abstract:
A composition for the transfection of higher eucaryotic cells, comprising complexes of nucleic acid, a substance having an affinity for nucleic acid and optionally an internalizing factor, contains an endosomolytic agent, e.g. a virus or virus component, which may be conjugated. The endosomolytic agent, which is optionally part of the nucleic acid complex, is internalized into the cells together with the complex and releases the contents of the endosomes into the cytoplasm, thereby increasing the gene transfer capacity. Pharmaceutical preparations, transfection kits and methods for introducing nucleic acid into higher eucaryotic cells by treating the cells with the composition are also disclosed.
Abstract:
The present invention provides bifunctional chelating agents comprising a unique substrate reactive moiety incorporated into a carboxymethyl arm of a polyaminopolycarboxylate chelating framework capable of forming stable complexes with metal ions.