摘要:
Devices and methods for carrying out a chemical or biochemical protocol are disclosed. In one embodiment, the chemical or biochemical protocol is performed by cycling at least one thermal transfer member between at least two temperatures while liquid samples on which the chemical or biochemical protocol is to be performed are continuously moving through at least one temperature regulated zone upon which the at least one thermal transfer member acts. In some embodiments, the device comprises a sample transport member that comprises liquid samples in sample receiving regions. The sample transport member moves the samples continuously through a temperature regulated zone which cycles between at least two temperatures while the liquid samples are moving through a temperature regulated zone on which at least one thermal transfer member acts. In some embodiments, the sample receiving regions comprise wells, hydrophillic films or hydrophillic filaments.
摘要:
Devices and methods for carrying out a chemical or biochemical protocol are disclosed. In one embodiment, the chemical or biochemical protocol is performed by cycling at least one thermal transfer member between at least two temperatures while liquid samples on which the chemical or biochemical protocol is to be performed are continuously moving through at least one temperature regulated zone upon which the at least one thermal transfer member acts. In some embodiments, the device comprises a sample transport member that comprises liquid samples in sample receiving regions. The sample transport member moves the samples continuously through a temperature regulated zone which cycles between at least two temperatures while the liquid samples are moving through a temperature regulated zone on which at least one thermal transfer member acts. In some embodiments, the sample receiving regions comprise wells, hydrophillic films or hydrophillic filaments.
摘要:
The invention relates to a device (1) for distribution of at least one liquid product, the device comprising at least one injection tube (2) supplied by a liquid product and being provided with an outlet orifice (4) capable of cooperating with an inlet orifice (12) of a reception tube (10) for reception of each liquid product. According to the invention, the outlet orifice (4) of each injection tube (2) and the inlet orifice (12) of the reception tube (10) open up into a sealed reservoir (6) full of an immiscible liquid (8), the outlet orifice (4) of each injection tube (2) being at a spacing from the inlet orifice (12) of the reception tube (10) and able to be located close to the reception tube (12), the device (1) also comprising means (14) for pressurizing the immiscible liquid (8).
摘要:
The invention concerns the performing, in continuous flow, of a biological, chemical or biochemical protocol on substances to be analysed, comprising several steps which consists in: in causing a mobile analysis support (11) comprising means (12) for receiving substances to be analysed and reagents to move past; implementing the steps of the protocol on the substances as the mobile analysis support (11) moves past.
摘要:
The invention relates to a microfluidic device for injecting series of mobile reaction chambers (102, 103) having non-miscible segmenters (101) in micro-channels (21 to 26), comprising: injection means (10) for injecting into microreaction channels alternatingly and in parallel liquid to form mobile reaction chambers and liquid for forming the segmenters; means for controlling the progression of one of the two liquids, applied to act on one zone (31) of each microchannel delimiting an injection volume of said liquid; the control means being able to cause stopping or slowing of the progression of said liquid over the zone of each microchannel by exerting an action based on a physico-chemical property of the liquid and said action not affecting the other liquid.
摘要:
The invention relates to hydraulic device produced from one or several components, for example from a support comprising: an operative cavity, at least two ducts, for example an inlet and outlet for a liquid of interest which communicate with said operative cavity, at least two valve bodies with no moving pieces for control of said cavity. The above is characterised in that said device further comprises two trapping chambers for a gas, for example, air, in communication only and respectively with two ducts, by means of two connecting channels respectively, both pertaining to thermal exchange with a heat source.
摘要:
A microfluidic system including: a substrate, one surface of which is covered with electrodes configured to move, under effect of an electric field, microdrops of a liquid phase including at least one functionalized ionic liquid; and capillaries for introducing a liquid extraction fluid onto the surface and for extracting the liquid extraction fluid from an orifice by forced convection, to obtain an extraction bath located on the surface for extraction of at least one chemical or biological compound from the liquid phase, and the bath is open to a surrounding space on at least two of its opposite sides, for moving, in contact with the surface, the microdrop upstream and downstream of the bath.
摘要:
A method for extracting at least one chemical or biological compound from a liquid phase including at least one functionalized ionic liquid, via a liquid extracting fluid that is miscible with the ionic liquid, and a microfluidic system implementing the method. The extraction method includes moving, on one surface of a microfluidic system, at least one microdrop of the liquid phase into an extraction solution that includes the extracting fluid and that is localized on the surface to obtain in output of the solution, under effect of an electric field, an extract moving away from the surface that is rich in extracting fluid and enriched in the at least one compound, and a raffinate moving on the surface that is rich in ionic liquid and deleted in the at least one compound.
摘要:
A lab-on-a-chip comprising a support plate, at least one fluidic network formed in a fluidic plate bonded onto the support plate, and a cover plate bonded onto the fluidic plate and covering the fluidic network. The fluidic network, at a first end, is connected to an inlet orifice allowing entry of a liquid to be sprayed and, at a second end, to a first end of an outlet channel for the liquid to be sprayed, formed in the fluidic plate. The fluidic plate is extended by a pointed electrospray nozzle at which the second end of the outlet channel forms the electrospray outlet of the lab-on-a-chip. The cover plate has a pointed extension forming a roof for that part of the channel located in the electrospray nozzle.
摘要:
A method for extracting at least one chemical or biological compound from a liquid phase including at least one functionalized ionic liquid, via a liquid extracting fluid that is miscible with the ionic liquid, and a microfluidic system implementing the method. The extraction method includes moving, on one surface of a microfluidic system, at least one microdrop of the liquid phase into an extraction solution that includes the extracting fluid and that is localized on the surface to obtain in output of the solution, under effect of an electric field, an extract moving away from the surface that is rich in extracting fluid and enriched in the at least one compound, and a raffinate moving on the surface that is rich in ionic liquid and deleted in the at least one compound.