Abstract:
A dielectric lens antenna having a lens comprising a dielectric material and a heating body disposed on a surface of the lens. The dielectric lens antenna has a snow-melting function, which prevents degradation in lens-efficiency.
Abstract:
An electronic module, comprising: a dielectric base plate having first and second opposing surfaces on which respective electrodes are disposed such that respective areas at the first and second surfaces are free of electrode material and aligned relative to one another to form a dielectric resonator; a first electronic component coupled to the base plate; and a first circuit sheet having first and second opposing surfaces, at least one aperture between the surfaces, and a conductor pattern disposed on the first surface, the first circuit sheet being disposed on the base plate such that: (i) the first electronic component is at least partially received within the aperture; and (ii) at least part of the conductor pattern is coupled to the dielectric resonator.
Abstract:
An electronic device includes one or more GaAs integrated circuits having a plurality of mutually independent field-effect transistors formed on a GaAs base-member; and one or more high-dielectric-constant base-members including a passive element on a surface thereof or therein.
Abstract:
An intrinsic device section is provided by laminating a drain area, an intermediate area, and a source area above a GaAs substrate and by forming a channel area at one oblique surface thereof. A drain electrode ohmic connected to the drain area extends toward the output side, a source electrode ohmic connected to the source area extends above the drain electrode with a dielectric layer placed therebetween, and thereby an output micro-wave transmission line is formed. A gate electrode Schottky connected to the channel area extends toward the input side, the source electrode extends above the drain electrode with the dielectric layer placed therebetween, and thereby an input micro-wave transmission line formed.
Abstract:
On two active areas formed in a semiconductor substrate, source electrodes, gate electrodes, and drain electrodes are disposed symmetrically to each other. A gate pad section electrically connected to both gate electrodes is disposed at one side of the active areas, and a drain pad section electrically connected to both drain electrodes is disposed at the other side of the active areas. A source pad section electrically connected to one source electrode is disposed at one side of the gate pad section and the drain pad section, and a source pad section electrically connected to the other source electrode is disposed at the other side of the gate pad section and the drain pad section. An input slot line is formed between the gate pad section and the source pad sections, and an output slot line is formed between the drain pad section and the source pad sections.
Abstract:
An amplifying circuit is formed by a combination of a dielectric line waveguide and a semiconductor device. Two electrically conductive plates are provided substantially parallel to each other. Two dielectric strips are disposed between the two conductive plates, and a dielectric plate is further inserted between the dielectric strips. Ground conductors are formed on the dielectric plate. The ground conductors have an area which equals an amount required for blocking a RF signal propagating in the dielectric line waveguide. A slot line is formed between the ground conductors in a position intermediate opposed sides of the dielectric strips. Line-switching conductor patterns are provided at both sides of the ends of the slot line. A field-effect transistor is mounted on the slot line such that it bridges over the slot line. Accordingly, losses and distortion of an RF signal, which would occur in an input/output circuit, are suppressed, and the generation of parasitic coupling is eliminated. Further, the dielectric line waveguide is miniaturized free from an external circuit, and accordingly, the manufacturing cost is reduced as well.
Abstract:
A high-frequency circuit device includes a substrate and a high-frequency circuit. The high-frequency circuit is provided on the substrate and has a signal line. The signal line is configured with a slot line provided by electrodes that are arranged side-by-side with a space therebetween on the substrate. The slot line can facilitates circuit design compared to a microstrip line and has significantly low conduction loss compared to a coplanar line, and can improve the Q-value of the high frequency circuit. This can provide an improved high-frequency circuit device having small phase noise. The high-frequency circuit device, which also serves as an oscillator, employs a slot output and thus can provide an advantage of better continuity for a class-B push-pull amplifier that operates more efficiently than a class-A one.
Abstract:
A dielectric line switch is provided which is capable of easily controlling the propagation of an electromagnetic wave. Also provided is an antenna device employing said dielectric line switch. As an embodiment of the invention, a plurality of dielectric lines and a plurality of primary radiators are provided on a rotary unit. With the rotation of the rotary unit, the dielectric lines are switched ON and OFF by virtue of mechanical means, so that a desired change-over may be effected among the plurality of primary radiators in a time sharing manner, and the positions of the primary radiators may be shifted within a plane of the focal point of a dielectric lens, thereby enabling the transmission wave beam and/or reception wave beam to scan in a desired manner.
Abstract:
The invention provides an antenna in which a signal is directly transferred from a planar dielectric transmission line to a primary radiator without having to perform transmission mode conversion from the planar dielectric transmission mode to another mode such as a coplanar transmission mode, a microstrip transmission mode, or a waveguide transmission mode thereby eliminating the transmission loss which would otherwise occur due to the transmission mode conversion. A dielectric resonator is disposed in the vicinity of the end of the planar dielectric transmission line PDTL formed between two slots disposed on both sides of a dielectric plate. Furthermore, a slotted plate, a lens supporting base, and a dielectric lens are disposed one on another.
Abstract:
A planar dielectric line having a first slot sandwiched between first and second electrodes is provided on a surface of a dielectric substrate. A second slot is positioned so as to face the first slot and is sandwiched between third and fourth electrodes on the rear face of the dielectric substrate. The width of the first slot is narrower than the width of the second slot so that the electromagnetic field energy of a high-frequency signal is concentrated in the first slot.