Abstract:
A non-volatile semiconductor memory device according to one embodiment of the present invention includes a memory cell array and a control unit. The control unit is configured to control a repeat of an erase operation, an erase verify operation, and a step-up operation. The control unit is configured to perform a soft-programming operation of setting the memory cells from an over-erased state to a first threshold voltage distribution state when, in a series of erase operations, the number of erase voltage applications is more than a first number and less than a second number (the first number
Abstract:
A semiconductor storage device has a plurality of memory cells each having a control gate that are formed on a well. The semiconductor storage device has a control circuit that applies a voltage to the well and the control gates.In an erase operation of the memory cell, the control circuit applies a first pulse wave of a first erasure voltage that rises stepwise to the well and then applies a second pulse wave of a second erasure voltage to the well.
Abstract:
According to one embodiment, a semiconductor memory device includes a memory cell array includes a plurality of cell units each composed of a plurality of memory cells which are arranged at intersections of a plurality of bit lines and a plurality of word lines and whose current paths are connected in series and select transistors each connected to either end of the series connection, a voltage generator circuit which generates a voltage applied to the memory cell array, and a control circuit which controls the memory cell array and the voltage generator circuit.
Abstract:
A semiconductor storage device has a plurality of memory cells each having a control gate that are formed on a well. The semiconductor storage device has a control circuit that applies a voltage to the well and the control gates.In an erase operation of the memory cell, the control circuit applies a first pulse wave of a first erasure voltage that rises stepwise to the well and then applies a second pulse wave of a second erasure voltage to the well.
Abstract:
A nonvolatile semiconductor memory device according to one embodiment of the present invention includes: a memory cell array and a control circuit. The control circuit executes a first reading operation and a second reading operation. The first reading operation is an operation of reading a threshold voltage set in the selected memory cell by setting a voltage between a control gate electrode and source of the selected memory cell to a first value. The second reading operation is an operation of reading a threshold voltage set in the selected memory cell by setting a voltage between the control gate electrode and source of the selected memory cell to a second value lower than the first value. When executing the second reading operation, the control circuit keeps a voltage of the control gate electrode of the selected memory cell to 0 or a positive value.
Abstract:
A control circuit executes an erase operation that includes an erase pulse application operation and an erase verify operation. The erase pulse application operation applies an erase pulse voltage to a memory cell to change the memory cell from a write state to an erase state. The erase verify operation applies an erase verify voltage to the memory cell to judge whether the memory cell is in the erase state or not. The control circuit changes conditions of execution of the erase verify operation when the number of times of executions of the erase pulse application operation in one erase operation reaches a first number.
Abstract:
According to one embodiment, a semiconductor memory device includes a memory cell array includes a plurality of memory cell units which are arranged at intersections of a plurality of bit lines and a plurality of word lines and whose current paths are connected in series, a voltage generator circuit which generates a voltage to be applied to the memory cell array, and a control circuit which controls the memory cell array and the voltage generator circuit. The control circuit, when writing data into the memory cell array, performs control so as to apply a first write pass voltage to unselected word lines in the memory cell units and, after a selected word line has reached a write voltage, further apply a voltage to the unselected word lines until a second write pass voltage higher than the first write pass voltage has been reached.
Abstract:
When a P lock state is set on the basis of a predetermined request signal for setting the P lock state, a P position indicator lamp (62) is turned on or off on the basis of the status of power supplied to the vehicle (10). For example, when the P lock state is set, the P position indicator lamp (62) is turned off when the power status is an ALL-OFF status where a combination meter (56), or the like, is not turned on or is raised to an ACC-ON status; whereas, when the P lock state is set, the P position indicator lamp (62) is turned on when the power status is an IG-ON status, when the power status is changed from the IG-ON status during vehicle driving to the ACC-ON status, or within a predetermined period of time from when the power status is changed from the IG-ON status to the ALL-OFF status.
Abstract:
It is provided a shift control device for a vehicle having a parking lock device driven by an actuator to selectively switch switching positions between a lock position and an unlock position, wherein when a run-enable operation is made by a driver and a non-running state is switched to a running state, shift position recognizing control is executed for recognizing an initial switching position appearing at the beginning when the running state is established, by driving the actuator in response to switching position information indicative of the switching position on a stage before the running state is established, wherein: the non-running state is configured to be switched to the running state prior to the execution of the run-enable operation; and updating of the switching position information, stored in the switching position information storage device, is permitted to be executed subjected to the switching position recognizing control being executed.
Abstract:
When data is written to a memory cell transistor, a write controller controls in such a manner that a verification operation subsequent to a program operation is carried out while a program voltage is increased stepwise for each program operation. The write controller controls in such a manner that a verification operation subsequent to a program operation by which a threshold voltage of a memory cell transistor to be written has become equal to or higher than a verification level for the first time is carried out twice or more at the same verification level, verification operations of the second and subsequent times are carried out after a second program operation which is carried out with the memory cell transistor set in an unselected state.