Abstract:
A temperature sensor includes a current source to produce a first bias current and a second bias current, a plurality of diodes, and temperature estimation circuitry. The plurality of diodes includes at least a first diode to receive the first bias current and a second diode to receive the second bias current. The temperature estimate circuitry measures a first voltage bias across the first diode resulting from the first bias current and a second voltage bias across the second diode resulting from the second bias current, and estimates a temperature of an environment of the temperature sensor based at least in part on the first voltage bias and the second voltage bias. The temperature sensor further includes error detection circuitry to measure at least one of the first or second bias currents and determine an amount of error in the temperature estimate based at least in part on the measurement.
Abstract:
A device may include a voltage-to-current converter circuit having an operational transconductance amplifier (OTA), the voltage-to-current converter circuit for generating a bias current that is proportional to a reference voltage at a reference voltage input port of the OTA, and a bias current feedback path for providing the bias current to a bias current input port of the OTA. The device may further include a startup current generator circuit coupled to the bias current input port of the OTA, the startup current generator circuit controllable to provide a startup current to the bias current input port during a startup of the device and to be deactivated after the startup of the device.
Abstract:
A circuit for receiving an input signal is described. The receiver comprises a first receiver input configured to receive a first input of a differential input signal; a second receiver input configured to receive a second input of a differential input signal; a differential pair having an inverting input and a non-inverting input; a first impedance matching element coupled to the differential pair, wherein the first impedance matching element provides DC impedance matching from the inverting input and non-inverting input of the differential pair; and a second impedance matching element coupled to the differential pair, wherein the second impedance matching element provides AC impedance matching from the inverting input and non-inverting input of the differential pair.
Abstract:
Examples described herein provide for a relaxation oscillator and corresponding methods of operation. In an example, a circuit includes a dynamically controllable current source, a capacitor, and an oscillator generation circuit. The dynamically controllable current source includes a digitally tunable current mirror configured to generate a current. The digitally tunable current mirror includes multiple transistors configured to be selectively electrically connected in parallel to alter a gain of the digitally tunable current mirror to control the current. The capacitor is selectively electrically connected to the dynamically controllable current source. The oscillator generation circuit is electrically connected to the capacitor. The oscillator generation circuit is configured to generate an oscillation signal in response to a voltage of the capacitor.
Abstract:
An example voltage reference circuit includes: a reference circuit comprising a first circuit configured to generate a proportional-to-temperature current and corresponding first control voltage and a second circuit configured to generate a complementary-to-temperature current and corresponding second control voltage; a first current source coupled to a first load circuit, the first current source generating a sum current of the proportional-to-temperature current and the complementary-to-temperature current in response to the first and second control voltages, the first load circuit generating a zero temperature coefficient (Tempco) voltage from the sum current; and a second current source coupled to a second load circuit, the second current source generating the sum current of the proportional-to-temperature current and the complementary-to-temperature current in response to the first and second control voltages, the second load circuit generating a negative Tempco voltage from the sum current and the complementary-to-temperature current.
Abstract:
Various example implementations are directed to circuits and methods for generating a clock signal. According to an example embodiment, a circuit arrangement includes a relaxation oscillator configured to output a clock signal. The clock signal has an oscillation frequency dependent on a reference current provided to the relaxation oscillator, an operating temperature of the relaxation oscillator, and a supply voltage used to power the relaxation oscillator. The circuit arrangement also includes a current source coupled to the relaxation oscillator and configured to generate the reference current. The current source is configured to adjust the reference current, in response to a change in one or more of the temperature of the relaxation oscillator and the supply voltage, to inhibit change in the oscillation frequency of the clock signal.
Abstract:
A system for calibrating impedance of an input/output (I/O) buffer on a semiconductor die includes: the I/O buffer; a temperature sensor on the semiconductor die; and a supply sensor on the semiconductor die. The temperature sensor is configured to acquire temperature information for calibrating the I/O buffer. The supply sensor is configured to acquire voltage information for calibrating the I/O buffer. The I/O buffer comprises: a memory component coupled to the temperature and supply sensors and configured to store the acquired temperature or voltage information; a logic component coupled to the memory component; and a driver with driver legs. The driver is coupled to the logic component. The logic component is configured to generate driver control signals representing an on/off configuration for the driver legs of the driver based at least in part on the acquired temperature information or the acquired voltage information stored in the memory component.
Abstract:
An example voltage reference circuit includes: a reference circuit comprising a first circuit configured to generate a proportional-to-temperature current and corresponding first control voltage and a second circuit configured to generate a complementary-to-temperature current and corresponding second control voltage; a first current source coupled to a first load circuit, the first current source generating a sum current of the proportional-to-temperature current and the complementary-to-temperature current in response to the first and second control voltages, the first load circuit generating a zero temperature coefficient (Tempco) voltage from the sum current; and a second current source coupled to a second load circuit, the second current source generating the sum current of the proportional-to-temperature current and the complementary-to-temperature current in response to the first and second control voltages, the second load circuit generating a negative Tempco voltage from the sum current and the complementary-to-temperature current.
Abstract:
In an example, a temperature-corrected voltage reference circuit for use in an integrated circuit (IC) includes a voltage reference circuit, a programmable gain amplifier, and a digital control circuit. The programmable gain amplifier includes a first input coupled to the voltage reference circuit, a second input coupled to receive a control signal, and an output coupled to provide a temperature-corrected voltage reference. The digital control circuit includes an input coupled to receive a temperature signal indicative of temperature of the IC and an output coupled to the second input of the programmable gain amplifier, the digital control circuit generating the control signal in response to the temperature signal.
Abstract:
An apparatus includes: a switch having a first transistor, the first transistor having a gate, wherein the switch is connected between a first pad and a second pad; and a first biasing circuit coupled to the gate of the first transistor, wherein the first biasing circuit is configured for outputting a first voltage, the first voltage being the lowest one of (1) a voltage of the first pad, (2) a voltage of the second pad, and (3) a ground voltage; wherein the gate of the first transistor is driven by the first voltage from the first biasing circuit in response to an enable signal being set for configuring the switch to be off.