Abstract:
Systems and methods are proposed for non-contact monitoring of spatio-temporal mechanics comprising motion patterns of respiratory muscles, lungs and diaphragm. The depth capable sensors system is comprised of modules, including a depth estimation module, a reference shape generation module, a region of interest shape estimation module, and a shape comparison module. A recommender module is optionally included. The acquisition of spatio-temporal respiratory mechanic data comprising a time varying sequence of spatially dependent representations of the respiratory mechanics of the subject are processed for identifying differences between the subject's actual respiratory mechanics and desired mechanics that can improve the health of the subject, or identify particular maladies.
Abstract:
What is disclosed is a system and method for identifying a patient's breathing pattern for respiratory function assessment without contact and with a depth-capable imaging system. In one embodiment, a time-varying sequence of depth maps are received of a target region of a subject of interest over a period of inspiration and expiration. Once received, the depth maps are processed to obtain a breathing signal for the subject. The subject's breathing signal comprises a temporal sequence of instantaneous volumes. One or more segments of the subject's breathing signal are then compared against one or more reference breathing signals each associated with a known pattern of breathing. As a result of the comparison, a breathing pattern for the subject is identified. The identified breathing pattern is then used to assess the subject's respiratory function. The teachings hereof find their uses in an array of diverse medical applications. Various embodiments are disclosed.
Abstract:
A system and method of localizing vascular patterns by receiving frames from a video camera, identifying and tracking an object within the frames, determining temporal features associated with the object; and localizing vascular patterns from the frames based on the temporal features associated with the object.
Abstract:
A method, non-transitory computer readable medium, and apparatus for compressive imaging of a scene in a single pixel camera are disclosed. For example, the method moves a pseudo-random pattern media behind an aperture until a pseudo-random sampling function of a plurality of pseudo-random sampling functions is viewable through the aperture, records a value of an intensity of a modulated light from the scene with a detector, wherein the intensity of the modulated light is representative of an inner product between the pseudo-random sampling function and an image of the scene and repeats the moving and the recording until a necessary number of a plurality of inner products are processed.
Abstract:
Systems and methods are proposed for non-contact monitoring of spatio-temporal mechanics comprising motion patterns of respiratory muscles, lungs and diaphragm. The depth capable sensors system is comprised of modules, including a depth estimation module, a reference shape generation module, a region of interest shape estimation module, and a shape comparison module. A recommender module is optionally included. The acquisition of spatio-temporal respiratory mechanic data comprising a time varying sequence of spatially dependent representations of the respiratory mechanics of the subject are processed for identifying differences between the subject's actual respiratory mechanics and desired mechanics that can improve the health of the subject, or identify particular maladies.
Abstract:
A method for computing output using a non-contact (invisible) input signal includes acquiring depth data of a scene captured by a depth-capable sensor. The method includes generating a temporal series of depth maps corresponding to the depth data. The method includes generating at least one volumetric attribute from the depth data. The method includes generating an output based on the volumetric attribute to control actions.
Abstract:
A method, non-transitory computer readable medium, and apparatus for compressive imaging of a scene in a single pixel camera are disclosed. For example, the method moves a pseudo-random pattern media behind an aperture until a pseudo-random sampling function of a plurality of pseudo-random sampling functions is viewable through the aperture, records a value of an intensity of a modulated light from the scene with a detector, wherein the intensity of the modulated light is representative of an inner product between the pseudo-random sampling function and an image of the scene and repeats the moving and the recording until a necessary number of a plurality of inner products are processed.
Abstract:
Embodiments of a system are disclosed for stress assessment of a call center agent while interacting with a customer. The system is for use with a communication network. The system includes a stress assessment device and an agent device that includes an imaging unit. The agent device is configured to capture video of a target region of exposed skin of the agent using the imaging unit, collect customer interaction data based on interaction with a customer device over the communication network, and communicate the captured video and the customer interaction data to the stress assessment device. The stress assessment device is configured to passively estimate agent stress-level based on the received video, and generate feedback to the agent based on correlation between the customer interaction data and the estimated stress-level over a predefined time interval.
Abstract:
A method is provided for using a single-pixel imager in order to spatially reconstruct an image of a scene. The method can comprise the following: configuring a light filtering device including an array of imaging elements to a spatially varying optical filtering process of incoming light according to a series of spatial patterns corresponding to sampling functions. The light filtering device can be a transmissive filter including a first membrane, a second membrane, and a variable gap therebetween. The method further comprises tuning a controller for manipulating a variable dimension of the gap; and, measuring, using a photodetector of the single-pixel imager, a magnitude of an intensity of the filtered light across pixel locations in the series of spatial patterns. The magnitude of the intensity can be equivalent to an integral value of the scene across the pixel locations.
Abstract:
What is disclosed is a system and method for identifying a patient's breathing pattern for respiratory function assessment without contact and with a depth-capable imaging system. In one embodiment, a time-varying sequence of depth maps are received of a target region of a subject of interest over a period of inspiration and expiration. Once received, the depth maps are processed to obtain a breathing signal for the subject. The subject's breathing signal comprises a temporal sequence of instantaneous volumes. One or more segments of the subject's breathing signal are then compared against one or more reference breathing signals each associated with a known pattern of breathing. As a result of the comparison, a breathing pattern for the subject is identified. The identified breathing pattern is then used to assess the subject's respiratory function. The teachings hereof find their uses in an array of diverse medical applications. Various embodiments are disclosed.