Abstract:
A memory device includes a conductive structure, a number of dielectric layers and a control gate. The dielectric layers are formed around the conductive structure and the control gate is formed over the dielectric layers. A portion of the conductive structure functions as a drain region for the memory device and at least one of the dielectric layers functions as a charge storage structure for the memory device. The dielectric layers may include oxide-nitride-oxide layers.
Abstract:
A non-volatile memory device includes a substrate, an insulating layer, a fin, a conductive structure and a control gate. The insulating layer may be formed on the substrate and the fin may be formed on the insulating layer. The conductive structure may be formed near a side of the fin and the control gate may be formed over the fin. The conductive structure may act as a floating gate electrode for the non-volatile memory device.
Abstract:
A memory device includes a conductive structure, a number of dielectric layers and a control gate. The dielectric layers are formed around the conductive structure and the control gate is formed over the dielectric layers. A portion of the conductive structure functions as a drain region for the memory device and at least one of the dielectric layers functions as a charge storage structure for the memory device. The dielectric layers may include oxide-nitride-oxide layers.
Abstract:
A non-volatile memory device includes a substrate, an insulating layer, a fin, a number of dielectric layers and a control gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The dielectric layers are formed over the fin and the control gate is formed over the dielectric layers. The dielectric layers may include oxide-nitride-oxide layers that function as a charge storage structure for the memory device.
Abstract:
A semiconductor device includes a group of fin structures. The group of fin structures includes a conductive material and is formed by growing the conductive material in an opening of an oxide layer. The semiconductor device further includes a source region formed at one end of the group of fin structures, a drain region formed at an opposite end of the group of fin structures, and at least one gate.
Abstract:
A method of forming a semiconductor device includes forming a fin on an insulating layer, where the fin includes a number of side surfaces, a top surface and a bottom surface. The method also includes forming a gate on the insulating layer, where the gate has a substantially U-shaped cross-section at a channel region of the semiconductor device.
Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A first device may be formed on the insulating layer, including a first fin. The first fin may be formed on the insulating layer and may have a first fin aspect ratio. A second device may be formed on the insulating layer, including a second fin. The second fin may be formed on the insulating layer and may have a second fin aspect ratio different from the first fin aspect ratio.
Abstract:
A method may include forming a gate electrode over a fin structure, depositing a first metal layer on a top surface of the gate electrode, performing a first silicide process to convert a portion of the gate electrode into a metal-silicide compound, depositing a second metal layer on a top surface of the metal-silicide compound, and performing a second silicide process to form a fully-silicided gate electrode.
Abstract:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin, source and drain regions and a gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The source region is formed on the insulating layer adjacent a first side of the fin and the drain region is formed on the second side of the fin opposite the first side. The source and drain regions have a greater thickness than the fin in the channel region of the semiconductor device.
Abstract:
A method of manufacturing a MOSFET type semiconductor device includes planarizing a gate material layer that is deposited over a channel. The planarization is performed in a multi-step process that includes an initial “rough” planarization and then a “fine” planarization. The slurry used for the finer planarization may include added material that tends to adhere to low areas of the gate material.