Abstract:
A flexible one-piece thin film with microelectro-mechanical systems (MEMS) probe circuits has a flexible non-conducting dielectric layer made from polyimide or silica, various electrical circuits arranged in multi-layered structure all embedded inside the dielectric layer, plural probes and circuit contacts protected by the dielectric layer from damage by way of one end embedded into the dielectric layer in connection with the electrical circuits respectively and the other end protruded out of the dielectric layer, and a raised probe supported-spacer disposed on the dielectric layer to form a buffer to the probes to prevent the probe from being exposed to much pressure.
Abstract:
A process for producing flexible MEMS thin film without a manufactured substrate applied in a MEMS manufacture specially includes a method of forming a component interface in the middle between a manufactured substrate and a MEMS thin film formed on the manufactured substrate as a basis, which component interface is so easily destroyed by an external force that the MEMS thin film produced by the mentioned process is easily separated from the manufactured substrate, and the separated MEMS thin film due to out of limitation from the manufactured substrate may be further processed in later working process to obtain a MEMS thin film with special structural features has flexibility and particularly has electrical circuits, micro structure, or MEMS components integrated and manufactured into inside or on its both sides.
Abstract:
A process for producing a thin film with MEMS probe circuits by using semiconductor process technology comprises steps of providing a flatted process substrate; forming a separable interface on the flatted process substrate; forming a probe circuit thin film with electric circuits, probes and circuit contacts on the separable interface; forming a raised probe supported-spacer on the probe circuit thin film; separating the probe circuit thin film from the process substrate; and processing a subsequent microstructure working to obtain a thin film with MEMS probe circuits which use the raised probe supported-spacer to form a buffer to prevent the probes from being exposed to much pressure.
Abstract:
An IC chip package, including a single chip package, two stacked chips package or a System-In-Package (SIP), is created to minimize the assembled volume, which basic structure comprises a chip, a circuited substrate provided for the chip electrically mounted thereon and an encapsulated means for covering the chip to constitute a package structure, wherein the chip has a processed substrate with an active side and an inactive side and one or more half-tunneling electrical contacts penetrating the processed substrate to form one or more electrical contacts on the inactive side of the chip, so that the chip is directly through the inactive side of the processed substrate electrically mounted to the circuited substrate without via bonding wires.
Abstract:
A MEMPCS having high stiffness against bending deformation or distortion is formed by integrating the probe, electronic circuit, circuit connecting pad and dielectric material into a complete unit with flexible multiple-layered substrate structure, and the part of the probe extended outside the dielectric material is further wrapped with a protecting layer to form an reinforced structure for increasing high stiffness to the probe and for preventing environmental dirt and particle from getting into the gap existed between the probes of the MEMPCS.
Abstract:
A MEMPCS having high stiffness against bending deformation or distortion is formed by integrating the probe, electronic circuit, circuit connecting pad and dielectric material into a complete unit with flexible multiple-layered substrate structure, and the part of the probe extended outside the dielectric material is further wrapped with a protecting layer to form an reinforced structure for increasing high stiffness to the probe and for preventing environmental dirt and particle from getting into the gap existed between the probes of the MEMPCS.
Abstract:
A process for producing a thin film with MEMS probe circuits by using semiconductor process technology comprises steps of providing a flatted process substrate; forming a separable interface on the flatted process substrate; forming a probe circuit thin film with electric circuits, probes and circuit contacts on the separable interface; forming a raised probe supported-spacer on the probe circuit thin film; separating the probe circuit thin film from the process substrate; and processing a subsequent microstructure working to obtain a thin film with MEMS probe circuits which use the raised probe supported-spacer to form a buffer to prevent the probes from being exposed to much pressure.
Abstract:
A method for producing a chip structure with one electrical contact formed on inactive side thereof includes by pre-forming at least one half-tunneling electrical contact to penetrate a processed substrate prepared for processing a chip, and when finishing processing the chip the half-tunneling electrical contact is without completely penetrated the whole chip, particularly one end of the half-tunneling electrical contact is exposed on the inactive side of the chip and formed as an electrical contact of the chip and the other end of the half-tunneling electrical contact is electrically connected to a circuit formed in the chip; the kind of chip having the half-tunneling electrical contact may provide with various layouts and designs of the electrical contacts to minimize the assembled volume of the chip, and the chips are easily stacked together or assembled into a System-In-Package (SIP) structure.
Abstract:
A flexible one-piece thin film with microelectro-mechanical systems (MEMS) probe circuits has a flexible non-conducting dielectric layer made from polyimide or silica, various electrical circuits arranged in multi-layered structure all embedded inside the dielectric layer, plural probes and circuit contacts protected by the dielectric layer from damage by way of one end embedded into the dielectric layer in connection with the electrical circuits respectively and the other end protruded out of the dielectric layer, and a raised probe supported-spacer disposed on the dielectric layer to form a buffer to the probes to prevent the probe from being exposed to much pressure.
Abstract:
A method of forming component interface in semiconductor or MEMS manufacture is by way of a bad adhesion material or manufacture, or an easy etching and removable material, to form an easily removed component interface in the middle between a manufactured substrate and a layer of semiconductor circuit or MEMS component formed on the manufactured substrate as a basis, therefore, after semiconductor or MEMS manufacture is completed, the component interface is so easily destroyed by an external force that the layer of semiconductor circuit or MEMS component is easily separated from the manufactured substrate.