Abstract:
Systems and methods provide reliable voice connections dual-connectivity environments, given limitations of available spectrum. A system includes a first wireless station and a second wireless station. The first wireless station provides a shared spectrum of a first frequency band, the shared spectrum including a first spectrum for a first cellular wireless standard and a second spectrum for a second cellular wireless standard. The second wireless station is at least partially within a coverage area of the first wireless station and provides a third spectrum for the second cellular wireless standard. The third spectrum is a millimeter wave (mmWave) spectrum. The first wireless station broadcasts a parameter barring an end device in an idle mode from camping on the second spectrum. The first wireless station or the second wireless station triggers the end device to swap to the second spectrum when a paging request for a voice call is received.
Abstract:
A system described herein may provide for the separation of functions associated with a User Plane Function (“UPF”) in a wireless network (e.g., a Fifth Generation (“5G”) network), such that routing devices associated with the wireless network may perform functionality that would otherwise be performed by virtualized hosts or other configurable resources. For example, routing components which form a backhaul or other portion of the network may process traffic according to a suitable set of policies (e.g., Quality of Service (“QoS”) policies, content filtering policies, queueing policies, and/or other policies) instead of transmitting such traffic to a UPF associated with the network core for processing.
Abstract:
A first network device determines a first pointer value associated with a first management instance that includes at least one of network access or mobility management functions for user equipment (UE) interaction with a wireless network. The first network device installs, at a second network device, the first management instance, along with the first pointer value. The first network device changes the first pointer value in response to a first event associated with the wireless network or one or more other networks. The first pointer value is used for selecting at least one management instance, among a plurality of management instances that include the first management instance, for servicing wireless service requests from UEs to the wireless network.
Abstract:
A method, a device, and a non-transitory storage medium are described in which a radio access network slice and core network slice service is provided based on RAN-CN network slice pairing information. A radio access network slice and/or a core network slice uses the RAN-CN network slice pairing information to select network resources to support sessions of end devices. The RAN-CN network slice pairing information may include location information, radio access network slice information, core network slice information correlated to different types or applications or services available to end devices. The RAN-CN network slice pairing information may include information indicating current and available radio access network resources pertaining to the radio access network slices and threshold resources that may be used to support the different types of applications or services.
Abstract:
A system may include a first network device, configured to establish first and second channels with a user device, the first and second channels being channels of a network layer of an Open Systems Interconnect (“OSI”) model, receive traffic associated with the user device, and output the traffic via one of the first channel or the second channel. The system may also include a second network device, configured to receive the traffic outputted by the first network device, identify via which channel, of the first and second channels, the traffic was outputted, determine a paging scheme associated with the identified channel, generate a downlink data notification (“DDN”) request, the DDN request indicating the determined paging scheme, and output the DDN request to a third network device, wherein the third network device performs paging, based on the determined paging scheme, to locate the user device.
Abstract:
A device may receive connection information associated with a connection, between a user device and a network, used to provide an application service to the user device. The connection information may include information identifying a network type of the network. The connection information may include information identifying an access point name associated with the connection. The application service may be provided by a device associated with providing the application service to the user device. The device may store the connection information based on receiving the connection information. The device may determine that the connection information is to be provided to the device associated with providing the application service to the user device, and may provide the connection information to the device associated with the application service. The connection information may permit the application service to be provided based on the network type of the network.
Abstract:
A method, a device, and a non-transitory storage medium are described in which a radio access network slice and core network slice service is provided based on RAN-CN network slice pairing information. A radio access network slice and/or a core network slice uses the RAN-CN network slice pairing information to select network resources to support sessions of end devices. The RAN-CN network slice pairing information may include location information, radio access network slice information, core network slice information correlated to different types or applications or services available to end devices. The RAN-CN network slice pairing information may include information indicating current and available radio access network resources pertaining to the radio access network slices and threshold resources that may be used to support the different types of applications or services.
Abstract:
Systems and methods provide reliable voice connections dual-connectivity environments, given limitations of available spectrum. A system includes a first wireless station and a second wireless station. The first wireless station provides a shared spectrum of a first frequency band, the shared spectrum including a first spectrum for a first cellular wireless standard and a second spectrum for a second cellular wireless standard. The second wireless station is at least partially within a coverage area of the first wireless station and provides a third spectrum for the second cellular wireless standard. The third spectrum is a millimeter wave (mmWave) spectrum. The first wireless station broadcasts a parameter barring an end device in an idle mode from camping on the second spectrum. The first wireless station or the second wireless station triggers the end device to swap to the second spectrum when a paging request for a voice call is received.
Abstract:
A method, a device, and a non-transitory storage medium are described in which a radio access network slice and core network slice service is provided based on RAN-CN network slice pairing information. A radio access network slice and/or a core network slice uses the RAN-CN network slice pairing information to select network resources to support sessions of end devices. The RAN-CN network slice pairing information may include location information, radio access network slice information, core network slice information correlated to different types or applications or services available to end devices. The RAN-CN network slice pairing information may include information indicating current and available radio access network resources pertaining to the radio access network slices and threshold resources that may be used to support the different types of applications or services.
Abstract:
Systems and methods provide reliable voice connections and highest possible data rates in New Radio dual-connectivity environments, given limitations of available spectrum. A system includes a first wireless station and a second wireless station. The first wireless station provides a shared spectrum of a first frequency band, the shared spectrum including a first spectrum for a first cellular wireless standard and a second spectrum for a second cellular wireless standard. The second wireless station is at least partially within a coverage area of the first wireless station and provides a third spectrum for the second cellular wireless standard. The third spectrum is a millimeter wave (mmWave) spectrum. The first wireless station broadcasts cell parameters barring an end device in an idle mode from camping on the second spectrum. The first wireless station or the second wireless station triggers the end device to swap to the second spectrum when a paging request for a voice call is received.