Quadrature receiver sampling architecture
    1.
    发明申请
    Quadrature receiver sampling architecture 有权
    正交接收机采样架构

    公开(公告)号:US20070053468A1

    公开(公告)日:2007-03-08

    申请号:US11593273

    申请日:2006-11-06

    IPC分类号: H04L27/22

    CPC分类号: H04L27/00

    摘要: Quadrature receiver sampling architecture. A signal ADC performs analog to digital conversion for both I and Q streams. An analog MUX selects the appropriate I and the Q baseband analog input streams for input to the ADC at the appropriate time. A digital filter may also be employed to compensate for any introduced delay between the samples of the I and Q channel when seeking to recover the symbols that have been transmitted to a communication receiver that employs this quadrature receiver architecture and/or signal processing. In one embodiment, if an ADC is clocked at a rate of substantially twice the sample rate of the I and Q channels, there will be a one-half sample clock delay between the digital I and digital Q data at the output of the ADC. This delay is then removed before the demodulator processes the input signals to recover the transmitted symbols.

    摘要翻译: 正交接收机采样架构。 信号ADC为I和Q流执行模数转换。 模拟MUX在适当的时间选择适当的I和Q基带模拟输入流输入ADC。 还可以采用数字滤波器来补偿在I和Q信道的样本之间的任何引入的延迟,当寻求恢复已被发送到使用该正交接收器架构和/或信号处理的通信接收机的符号时。 在一个实施例中,如果ADC以基本上是I和Q通道的采样率的两倍的速率被计时,则在ADC的输出处的数字I和数字Q数据之间将存在二分之一采样时钟延迟。 然后在解调器处理输入信号之前去除该延迟以恢复发送的符号。

    Downstream Time Domain Based Adaptive Modulation for DOCSIS Based Applications
    2.
    发明申请
    Downstream Time Domain Based Adaptive Modulation for DOCSIS Based Applications 有权
    基于DOCSIS的应用的下行时域自适应调制

    公开(公告)号:US20100074167A1

    公开(公告)日:2010-03-25

    申请号:US12409461

    申请日:2009-03-23

    IPC分类号: H04B7/212 H04L12/56

    摘要: In a DOCSIS based satellite gateway data is transmitted over a single downstream channel, at different throughput rates. Data destined for each subscriber/receiver is assigned a throughput rate depending upon the downstream signal quality of that subscriber/receiver. To accomplish this, the downstream DOCSIS MAC data is parsed to extract DOCSIS packets. The DOCSIS packets are then loaded into packet queues based on an identifier within such packets such as the MAC destination address or SID. Each of the queues represents a bandwidth efficiency or throughput rate that can be currently tolerated by specific subscribers based on the current signal quality being experienced at the subscriber location. A PHY-MAP describing the downstream data structure to be transmitted and inserted into the downstream data. Data is extracted from the packet queues in queue blocks as defined by the PHY-MAP. The queue blocks are modulated with transmission parameters appropriate for each queue block and transmitted to the DOCSIS based satellite modems. The satellite modems extract the PHY-MAP from the downstream data and use the information contained in it to demodulate and decode the queue for which they have sufficient downstream signal quality. Satellite modems measure and transmit downstream signal quality to the satellite gateway to be used to assigned traffic to the appropriate queues.

    摘要翻译: 在基于DOCSIS的卫星网关中,数据通过单个下游信道以不同的吞吐率传输。 根据该用户/接收机的下行信号质量为目的地为每个用户/接收机指定的数据被分配吞吐率。 为了实现这一点,下游DOCSIS MAC数据被解析以提取DOCSIS分组。 DOCSIS分组然后基于诸如MAC目的地址或SID之类的分组内的标识符加载到分组队列中。 每个队列表示基于当前在用户位置处经历的信号质量,特定订户可以容忍的带宽效率或吞吐率。 描述要发送并插入下游数据的下游数据结构的PHY-MAP。 从PHY-MAP定义的队列块中的数据包队列中提取数据。 使用适合于每个队列块的传输参数调制队列块,并将其发送到基于DOCSIS的卫星调制解调器。 卫星调制解调器从下游数据中提取PHY-MAP,并使用其中包含的信息对其具有足够的下行信号质量的队列进行解调和解码。 卫星调制解调器测量和传输下行信号质量到卫星网关,用于将流量分配给适当的队列。

    Downstream time domain based adaptive modulation for DOCSIS based applications
    3.
    发明授权
    Downstream time domain based adaptive modulation for DOCSIS based applications 失效
    基于DOCSIS的应用的下游时域自适应调制

    公开(公告)号:US07508785B2

    公开(公告)日:2009-03-24

    申请号:US10319929

    申请日:2002-12-12

    IPC分类号: H04B7/212

    摘要: In a DOCSIS based satellite gateway data is transmitted over a single downstream channel, at different throughput rates. Data destined for each subscriber/receiver is assigned a throughput rate depending upon the downstream signal quality of that subscriber/receiver. To accomplish this, the downstream DOCSIS MAC data is parsed to extract DOCSIS packets. The DOCSIS packets are then loaded into packet queues based on an identifier within such packets such as the MAC destination address or SID. Each of the queues represents a bandwidth efficiency or throughput rate that can be currently tolerated by specific subscribers based on the current signal quality being experienced at the subscriber location. A PHY-MAP describing the downstream data structure to be transmitted and inserted into the downstream data. Data is extracted from the packet queues in queue blocks as defined by the PHY-MAP. The queue blocks are modulated with transmission parameters appropriate for each queue block and transmitted to the DOCSIS based satellite modems. The satellite modems extract the PHY-MAP from the downstream data and use the information contained in it to demodulate and decode the queue for which they have sufficient downstream signal quality. Satellite modems measure and transmit downstream signal quality to the satellite gateway to be used to assigned traffic to the appropriate queues.

    摘要翻译: 在基于DOCSIS的卫星网关中,数据通过单个下游信道以不同的吞吐率传输。 根据该用户/接收机的下行信号质量为目的地为每个用户/接收机指定的数据被分配吞吐率。 为了实现这一点,下游DOCSIS MAC数据被解析以提取DOCSIS分组。 DOCSIS分组然后基于诸如MAC目的地址或SID之类的分组内的标识符加载到分组队列中。 每个队列表示基于当前在用户位置处经历的信号质量,特定订户可以容忍的带宽效率或吞吐率。 描述要发送并插入下游数据的下游数据结构的PHY-MAP。 从PHY-MAP定义的队列块中的数据包队列中提取数据。 使用适合于每个队列块的传输参数调制队列块,并将其发送到基于DOCSIS的卫星调制解调器。 卫星调制解调器从下游数据中提取PHY-MAP,并使用其中包含的信息对其具有足够的下行信号质量的队列进行解调和解码。 卫星调制解调器测量和传输下行信号质量到卫星网关,用于将流量分配给适当的队列。

    PHY sub-channel processing
    4.
    发明申请
    PHY sub-channel processing 有权
    PHY子通道处理

    公开(公告)号:US20080019465A1

    公开(公告)日:2008-01-24

    申请号:US11832530

    申请日:2007-08-01

    IPC分类号: H03D1/00

    摘要: Physical layer (PHY) sub-channel processing. A soft symbol decision stream is arranged into a number of sub-channels to reduce substantially the processing performed within a communication receiver on data that is not intended for that communication receiver. In other embodiments, a predetermined approach is employed to arrange the soft symbol decision stream into one or more frames; each frame may have one or more soft symbol blocks; and each soft symbol block may have one or more symbols. Each of the soft symbol blocks, within a frame, may be assigned to a sub-channel. Only the soft symbol blocks that contain information destined for the communication receiver need be decoded. Only the sub-channel that includes these soft symbol blocks, destined for this communication receiver, need be decoded. The soft symbol blocks not within the sub-channel may be discarded thereby recovering some of the processing capabilities of the communication receiver.

    摘要翻译: 物理层(PHY)子通道处理。 软符号决策流被布置成多个子信道,以基本上减少在通信接收机内对不是针对该通信接收机的数据执行的处理。 在其他实施例中,采用预定方法将软符号决策流布置成一个或多个帧; 每个帧可以具有一个或多个软符号块; 并且每个软符号块可以具有一个或多个符号。 帧中的每个软符号块可以被分配给子信道。 只需要包含指定给通信接收器的信息的软符号块被解码。 只需要包含去往该通信接收机的这些软符号块的子信道被解码。 不在子信道内的软符号块可能被丢弃,从而恢复通信接收机的一些处理能力。

    Three stage algorithm for automatic gain control in a receiver system
    5.
    发明授权
    Three stage algorithm for automatic gain control in a receiver system 失效
    一种接收机系统中自动增益控制的三阶段算法

    公开(公告)号:US07778617B2

    公开(公告)日:2010-08-17

    申请号:US11898614

    申请日:2007-09-13

    IPC分类号: H04B1/06

    CPC分类号: H03G3/3068 H03G1/0088

    摘要: In an embodiment, a receiver for processing a RF input signal having a variable signal strength includes an RF amplifier, an IF amplifier, and a controller. The RF amplifier is configured to receive and amplify the RF input signal. The IF amplifier is coupled to an output of the RF amplifier. The controller controls gains of the RF amplifier and the IF amplifier during times of falling signal strength. A gain of the IF amplifier is increased as the signal strength falls until a first amplitude threshold is reached for the falling signal strength. If the signal strength falls beyond the first threshold, a gain of the RF amplifier is increased until a second amplitude threshold is reached. The second amplitude threshold is lower than the first amplitude threshold. If the signal strength falls below the second amplitude threshold, the gain of the IF amplifier is further increased.

    摘要翻译: 在一个实施例中,用于处理具有可变信号强度的RF输入信号的接收器包括RF放大器,IF放大器和控制器。 RF放大器被配置为接收和放大RF输入信号。 IF放大器耦合到RF放大器的输出。 控制器在信号强度下降期间控制RF放大器和IF放大器的增益。 随着信号强度下降,IF放大器的增益增加,直到达到下降信号强度的第一幅度阈值为止。 如果信号强度超过第一阈值,则RF放大器的增益增加,直到达到第二幅度阈值。 第二幅度阈值低于第一幅度阈值。 如果信号强度低于第二幅度阈值,则IF放大器的增益进一步增加。

    Three stage algorithm for automatic gain control in a receiver system
    6.
    发明申请
    Three stage algorithm for automatic gain control in a receiver system 失效
    一种接收机系统中自动增益控制的三阶段算法

    公开(公告)号:US20080242249A1

    公开(公告)日:2008-10-02

    申请号:US11898614

    申请日:2007-09-13

    IPC分类号: H04B1/06

    CPC分类号: H03G3/3068 H03G1/0088

    摘要: In an embodiment, a receiver for processing a RF input signal having a variable signal strength includes an RF amplifier, an IF amplifier, and a controller. The RF amplifier is configured to receive and amplify the RF input signal. The IF amplifier is coupled to an output of the RF amplifier. The controller controls gains of the RF amplifier and the IF amplifier during times of falling signal strength. A gain of the IF amplifier is increased as the signal strength falls until a first amplitude threshold is reached for the falling signal strength. If the signal strength falls beyond the first threshold, a gain of the RF amplifier is increased until a second amplitude threshold is reached. The second amplitude threshold is lower than the first amplitude threshold. If the signal strength falls below the second amplitude threshold, the gain of the IF amplifier is further increased.

    摘要翻译: 在一个实施例中,用于处理具有可变信号强度的RF输入信号的接收器包括RF放大器,IF放大器和控制器。 RF放大器被配置为接收和放大RF输入信号。 IF放大器耦合到RF放大器的输出。 控制器在信号强度下降期间控制RF放大器和IF放大器的增益。 随着信号强度下降,IF放大器的增益增加,直到达到下降信号强度的第一幅度阈值为止。 如果信号强度超过第一阈值,则RF放大器的增益增加,直到达到第二幅度阈值。 第二幅度阈值低于第一幅度阈值。 如果信号强度低于第二幅度阈值,则IF放大器的增益进一步增加。

    FEC (forward error correction) decoder with dynamic parameters
    8.
    发明申请
    FEC (forward error correction) decoder with dynamic parameters 失效
    具有动态参数的FEC(前向纠错)解码器

    公开(公告)号:US20070256001A1

    公开(公告)日:2007-11-01

    申请号:US11823225

    申请日:2007-06-27

    IPC分类号: H03M13/00

    摘要: FEC (Forward Error Correction) decoder with dynamic parameters. A novel means by which FEC parameters may be encoded into, and subsequently extracted from, a signal stream to allow for adaptive changing of any 1 or more operational parameters that govern communications across a communication channel. FEC parameters are encoded directly into a data frame such that the data frame is treated identical to all other data frames within the signal stream. When the data frame actually includes FEC parameters, it is characterized as a CP (Control Packet) type. For example, when decoding an MPEG stream, an MPEG block that includes FEC parameters, that MPEG block is characterized as a CP MPEG block. The means by which FEC parameters are encoded and extracted from the signal stream allows for much easier adaptive modification of the manner by which signal are encoded, modulated, and processed within a communication system.

    摘要翻译: 具有动态参数的FEC(前向纠错)解码器。 FEC参数可以被编码到信号流中并随后从信号流中提取的新颖手段,以允许对通过通信信道进行通信的任何一个或多个操作参数进行自适应改变。 FEC参数被直接编码到数据帧中,使得数据帧被视为与信号流内的所有其他数据帧相同。 当数据帧实际上包含FEC参数时,它被表征为CP(控制分组)类型。 例如,当解码MPEG流时,包括FEC参数的MPEG块,该MPEG块被表征为CP MPEG块。 从信号流中对FEC参数进行编码和提取的手段允许在通信系统内对信号进行编码,调制和处理的方式进行更容易的自适应修改。

    FEC (Forward Error Correction) decoder with dynamic parameters
    9.
    发明申请
    FEC (Forward Error Correction) decoder with dynamic parameters 失效
    具有动态参数的FEC(前向纠错)解码器

    公开(公告)号:US20050138521A1

    公开(公告)日:2005-06-23

    申请号:US10916919

    申请日:2004-08-12

    IPC分类号: H03M13/00 H04L1/00 H04L1/18

    摘要: FEC (Forward Error Correction) decoder with dynamic parameters. A novel means by which FEC parameters may be encoded into, and subsequently extracted from, a signal stream to allow for adaptive changing of any 1 or more operational parameters that govern communications across a communication channel. FEC parameters are encoded directly into a data frame such that the data frame is treated identical to all other data frames within the signal stream. When the data frame actually includes FEC parameters, it is characterized as a CP (Control Packet) type. For example, when decoding an MPEG stream, an MPEG block that includes FEC parameters, that MPEG block is characterized as a CP MPEG block. The means by which FEC parameters are encoded and extracted from the signal stream allows for much easier adaptive modification of the manner by which signal are encoded, modulated, and processed within a communication system.

    摘要翻译: 具有动态参数的FEC(前向纠错)解码器。 FEC参数可以被编码到信号流中并随后从信号流中提取的新颖手段,以允许对通过通信信道进行通信的任何一个或多个操作参数进行自适应改变。 FEC参数被直接编码到数据帧中,使得数据帧被视为与信号流内的所有其他数据帧相同。 当数据帧实际上包含FEC参数时,它被表征为CP(控制分组)类型。 例如,当解码MPEG流时,包括FEC参数的MPEG块,该MPEG块被表征为CP MPEG块。 从信号流中对FEC参数进行编码和提取的手段允许在通信系统内对信号进行编码,调制和处理的方式进行更容易的自适应修改。

    Interleaver for iterative decoder
    10.
    发明申请

    公开(公告)号:US20060036819A1

    公开(公告)日:2006-02-16

    申请号:US11231635

    申请日:2005-09-21

    IPC分类号: G06F13/28

    摘要: Interleaver for iterative decoder. A memory management scheme allows for single plane/single port memory devices to be used by the interleaver. The design is adaptable to soft-in soft-out (SISO) decoders that perform iterative decoding. The interleaver may be implemented within communication devices that implement two distinct SISOs that operate cooperatively or within communication devices that employ a single SISO (in a recycled embodiment) that functionally performs the analogous decoding operations that would be performed by the two distinct SISO implementation. The use of single plane/single port memory devices by the interleaver allows for a great deal of savings from many perspectives: the sizes of the required interleaver memory and the interleaver pattern memory are both cut in half using this approach, and a cost savings may also be realized, in that, cheaper, slower memories may be used since each respective interleaver memory is read only every other cycle.