Abstract:
Apparatus to control a temperature of a device that includes: a thermal head adapted to be thermally contacted to the device; a combined path to the thermal head; a first path maintained at a first temperature and connected to the combined path; a second path maintained at a second temperature different from the first temperature and connected to the combined path; a third path connected to the combined path; a pump assembly operable to circulate thermal transfer fluid: from the thermal head, through each of the first, second and third paths, from each of the first, second and third paths, through the combined path, and from the combined path, to and through the thermal head; and a valve assembly operable to control amounts of thermal transfer fluid that flow into the first and second paths, thereby controlling the temperature.
Abstract:
One embodiment is a transport apparatus for moving carriers of microelectronic devices along a track, the transport apparatus including: (a) a track with two rails adapted to support the carriers; (b) a trolley adapted to be transported in a direction along the track by a linear actuator; and (c) a first and a second engagement feature attached to the trolley wherein the first engagement feature is adapted to engage temporarily with a first of the carriers, and the second engagement feature is adapted to engage temporarily with a second of the carriers; wherein a predetermined movement of the trolley slidably moves the first carrier onto a test position and slidably moves the second carrier off the test position simultaneously.
Abstract:
One embodiment of the present invention is a compliant thermal contactor that includes a resilient metal film having a plurality of first thermally conductive, compliant posts disposed in an array on a top side thereof and a plurality of second thermally conductive, compliant posts disposed in an array on a bottom side thereof.
Abstract:
One embodiment of the present invention is a socket useful to contact an electronic device, the socket including: (a) a body comprised of two or more contactor holder plates, each including one or more through holes; and (b) one or more contactors are disposed in one or more of the through holes; wherein an aperture in the body is adapted for introduction of thermal transfer fluid between two or more of the contactor holder plates.
Abstract:
A self-cleaning socket for contacting terminals on a microelectronic device wherein the first end of compliant tubular contactors rotate and wipe against terminals urged downwardly against the first end of the contactors. A rotational wipe of a contactor against a mating terminal breaks through any surface contamination layers on the terminal, thereby producing good electrical contact therebetween. Rotation of the first end of a contactor is caused by a downward deflection of a collar supported by two or more helical legs along a midsection of the contactor. Deflection of the collar distorts the resilient helical legs, each of which exerts a force on the collar which add up to produce a torsional force on the collar, thereby providing a rotational wipe in response to a downward urging of a terminal against the contactor. A void along the axis of the tubular contactor provides a reservoir to hold debris dislodged from the terminal and to keep the debris from interfering with operation of the contactor.
Abstract:
One embodiment of the present invention is a mounting apparatus that includes: (a) a first ring having a first surface and a second surface; (b) a second ring having a first surface and a second surface, which second ring is movable with respect to the first ring; (c) a first flexible diaphragm attached to: (i) the first surface of the first ring along a first-surface-first-ring attachment perimeter that encloses a first effective surface area, and (ii) the first surface of the second ring along a first-surface-second-ring attachment perimeter; and (d) a second flexible diaphragm attached to: (i) the second surface of the first ring along a second-surface-first-ring attachment perimeter that encloses a second effective surface area, and (ii) the second surface of the second ring at a second-surface-second-ring attachment perimeter; wherein: the first and second flexible diaphragms and the first and second rings form a chamber with one or more intake apertures.
Abstract:
One embodiment of the present invention is a method for setting and controlling temperature of a device that includes: (a) thermally contacting the device to a heat transfer apparatus, the heat transfer apparatus having an apparatus intake to receive thermal transfer fluid, an apparatus exhaust to output thermal transfer fluid, and a conduit to conduct thermal transfer fluid from the apparatus intake to the apparatus exhaust through the heat transfer apparatus; (b) flowing a first thermal transfer fluid in a first thermal control circuit at a first temperature, and flowing a second thermal transfer fluid in a second thermal control circuit at a second temperature; (c) at a first predetermined time, directing the first thermal transfer fluid to flow to the apparatus intake, and from the apparatus exhaust back to the first thermal control circuit and the second thermal transfer fluid to flow in the second thermal control circuit without flowing to the apparatus intake; and (d) at a second predetermined time, directing the second thermal transfer fluid to flow to the apparatus intake, and from the apparatus exhaust back to the second thermal control circuit and the first thermal transfer fluid to flow in the first thermal control circuit without flowing to the apparatus intake.
Abstract:
A small single-sided compliant probe is provided that includes a conductive tip, which is positioned on a supporting surface in a manner that allows a tip on the probe to move flexibly with respect to the supporting surface in close proximity to adjacent probes in an array. The probe tip moves vertically in response to the force of a mating contact pad as it biased against the tip. Mechanical compliance of the probe allows electrical contact to be made reliably between the probe and a corresponding contact pad on a microelectronic device, where the mechanical compliance accommodates variations in height of the contact pad.
Abstract:
A method of making a multiple part compliant interface for a microelectronic package including the steps of providing a first microelectronic element having electrically conductive parts, providing an array of curable elastomer support pads in contact with the first microelectronic element, curing the curable elastomer support pads while the support pads remain in contact with the first microelectronic element and providing an array of adhesive pads in contact with the support pads, whereby each adhesive pad is disposed over and in substantial alignment with one of the support pads. A second microelectronic element having electrically conductive parts is then assembled in contact with the array of adhesive pads by abutting the second microelectronic element against the array of adhesive pads and compressing the adhesive pads and support pads between the first and second microelectronic elements. The array of adhesive pads are then cured and the electrically conductive parts of the first and second microelectronic elements are interconnected. The array of support pads define channels running between any two adjacent support pads. A flowable curable elastomer encapsulant may be disposed within the channels after the electrically connecting step. Preferably, the support pads, adhesive pads and the encapsulant comprise substantially similar materials, such as silicone, in order to avoid problems associated with thermal cycling, such as air entrapment and/or voiding.
Abstract:
One embodiment is a transport apparatus for moving carriers of microelectronic devices along a track, the transport apparatus including: (a) a track with two rails adapted to support the carriers; (b) a trolley adapted to be transported in a direction along the track by a linear actuator; and (c) a first and a second engagement feature attached to the trolley wherein the first engagement feature is adapted to engage temporarily with a first of the carriers, and the second engagement feature is adapted to engage temporarily with a second of the carriers; wherein a predetermined movement of the trolley slidably moves the first carrier onto a test position and slidably moves the second carrier off the test position simultaneously.