Abstract:
An apparatus and method for displaying non-obscured pixels in a multiple-media motion video environment (dynamic image management) possessing overlaid windows. In an encoding process, only boundary values and identification values corresponding to each window on a screen are saved in memory of a hardware device. In a decoding process, the hardware device utilizes these initial boundary values saved in memory in such a way that when incoming video data enters the hardware device, the hardware device need only compare the incoming video data's identification with the identification saved in memory. The hardware device includes: compare logic devices, counters, minimal memory devices, a control logic block, and a driver.
Abstract:
The present invention provides an integrated display system for multi-media workstations wherein graphics image and video data are merged in a single frame buffer. The integrated display system employs 3-port VRAMs with a first serial access port for display data output, and a random access port for graphics data, a second serial access for video data input. The display system includes a single frame buffer memory system for a multi-media workstation which operates compatibly with display systems and logic designed for dual frame buffer systems and it uses the 3-port VRAM in combination with a means incorporating improved input locking, video update or refresh, and encoded video data input stream.
Abstract:
A method, a computer readable medium and an apparatus to adaptively control a data transmission rate of a wireless display device. The method includes determining a current data transmission rate capacity of a wireless channel; and controlling a data transmission rate of a wireless transmission device based on the current data transmission rate capacity.
Abstract:
In various embodiments, a processing element (PE) includes a data router adaptor (DRA) and one or more elements that produce function packets. When the DRA receives a function packet, it generates a set of associated router packets. Each of the associated router packets includes a segment of the function packet, and has a router packet data length that is less than or equal to the function packet length. In one embodiment, the router packet data lengths are included in a table, and can be re-configured to alter system performance parameters (e.g., bandwidth usage and/or latency). The DRA sends the set of associated router packets to a router for delivery through a packet-based network. A destination DRA receives the set of associated router packets, and generates a re-assembled function packet from the set of associated router packets. The destination DRA sends the re-assembled function packet to a destination element.
Abstract:
An apparatus and a system, as well as a method and article, may operate to include repeating first data to provide first repeated data and deleting second repeated data to provide second data according to a programmed standard included in a first apparatus and selected from a plurality of reprogrammable standards.
Abstract:
An apparatus and a system, as well as a method and article, may operate to control a bandwidth of a memory coupled to a plurality of data processing units responsive to protocol indications, such as a number of data processing units in use. In some embodiments, apparatus and systems, as well as methods and articles, may operate to select a memory access group size of about 2N memory banks responsive to receiving an indication of a change in a protocol type, wherein the group is selected from a number B of banks, and N is associated with the protocol type.
Abstract:
In various embodiments, a processing element (PE) includes a data router adaptor (DRA) and one or more elements that produce function packets. When the DRA receives a function packet, it generates a set of associated router packets. Each of the associated router packets includes a segment of the function packet, and has a router packet data length that is less than or equal to the function packet length. In one embodiment, the router packet data lengths are included in a table, and can be re-configured to alter system performance parameters (e.g., bandwidth usage and/or latency). The DRA sends the set of associated router packets to a router for delivery through a packet-based network. A destination DRA receives the set of associated router packets, and generates a re-assembled function packet from the set of associated router packets. The destination DRA sends the re-assembled function packet to a destination element.
Abstract:
A computer implemented method of manipulating and displaying an MPEG stream is described. In one embodiment of the invention, a computer implemented method comprises defining a spatial location across a series of pictures of an MPEG stream; and for each picture of the series of pictures in the MPEG stream, partially decoding the picture to determine an area of the picture falling within the spatial location.
Abstract:
A dual mesh interconnect network in a heterogeneous configurable circuit may be allocated between data communication and control communication.
Abstract:
An apparatus includes a primary information storage unit, a secondary information storage unit, and an information processing unit. The primary information storage unit has a primary storage capacity. The secondary information storage unit has a secondary storage capacity. The secondary storage capacity is less than the primary storage capacity. The secondary information storage unit receives information from the primary information storage unit and the information processing unit processes the information to form a transform.