Method for measuring saturation magnetization of magnetic films and multilayer stacks

    公开(公告)号:US11609296B2

    公开(公告)日:2023-03-21

    申请号:US17035153

    申请日:2020-09-28

    IPC分类号: G01R33/60

    摘要: A ferromagnetic resonance (FMR) measurement method is disclosed wherein a magnetic film or stack of layers is patterned into elongated structures having a length along a long axis. A magnetic field (H) is applied in two different orientations with respect to the long axis (in-plane parallel and perpendicular to the long axis) or one orientation may be perpendicular-to-plane. In another embodiment, H is applied parallel to a first set of elongated structures with a long axis in the x-axis direction, and perpendicular to a second set of elongated structures with a long axis in the y-axis direction. From the difference in measured resonance frequency (Δfr) (for a fixed magnetic field and sweeping through a range of frequencies) or the difference in measured resonance field (ΔHr) (for a fixed microwave frequency and sweeping through a range of magnetic field amplitudes), magnetic saturation Ms is determined using formulas of demagnetizing factors.

    Multi-probe ferromagnetic resonance (FMR) apparatus for wafer level characterization of magnetic films

    公开(公告)号:US11237240B2

    公开(公告)日:2022-02-01

    申请号:US17001476

    申请日:2020-08-24

    摘要: A ferromagnetic resonance (FMR) measurement system is disclosed with a plurality of “m” RF probes and one or more magnetic assemblies to enable a perpendicular-to-plane or in-plane magnetic field (Hap) to be applied simultaneously with a sequence of microwave frequencies (fR) at a plurality of “m” test locations on a magnetic film formed on a whole wafer under test (WUT). A FMR condition occurs in the magnetic film (stack of unpatterned layers or patterned structure) for each pair of (Hap, fR) values. RF input signals are distributed to the RF probes using RF power distribution or routing devices. RF output signals are transmitted through or reflected from the magnetic film to a plurality of “n” RF diodes where 1≤n≤m, and converted to voltage signals which a controller uses to determine effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening at the predetermined test locations.

    Seed Layer for Multilayer Magnetic Materials

    公开(公告)号:US20210391533A1

    公开(公告)日:2021-12-16

    申请号:US17460457

    申请日:2021-08-30

    摘要: A magnetic element is disclosed wherein a composite seed layer such as TaN/Mg enhances perpendicular magnetic anisotropy (PMA) in an overlying magnetic layer that may be a reference layer, free layer, or dipole layer. The first seed layer is selected from one or more of Ta, Zr, Nb, TaN, ZrN, NbN, and Ru. The second seed layer is selected from one or more of Mg, Sr, Ti, Al, V, Hf, B, and Si. A growth promoting layer made of NiCr or an alloy thereof is inserted between the seed layer and magnetic layer. In some embodiments, a first composite seed layer/NiCr stack is formed below the reference layer, and a second composite seed layer/NiCr stack is formed between the free layer and a dipole layer. The magnetic element has thermal stability to at least 400° C.

    Method for Measuring Saturation magnetization of Magnetic Films and Multilayer Stacks

    公开(公告)号:US20200116811A1

    公开(公告)日:2020-04-16

    申请号:US16161166

    申请日:2018-10-16

    IPC分类号: G01R33/60

    摘要: A ferromagnetic resonance (FMR) measurement method is disclosed wherein a magnetic film or stack of layers is patterned into elongated structures having a length along a long axis. A magnetic field (H) is applied in two different orientations with respect to the long axis (in-plane parallel and perpendicular to the long axis) or one orientation may be perpendicular-to-plane. In another embodiment, H is applied parallel to a first set of elongated structures with a long axis in the x-axis direction, and perpendicular to a second set of elongated structures with a long axis in the y-axis direction. From the difference in measured resonance frequency (Δfr) (for a fixed magnetic field and sweeping through a range of frequencies) or the difference in measured resonance field (ΔHr) (for a fixed microwave frequency and sweeping through a range of magnetic field amplitudes), magnetic saturation Ms is determined using formulas of demagnetizing factors.

    Perpendicularly Magnetized Ferromagnetic Layers Having an Oxide Interface Allowing for Improved Control of Oxidation

    公开(公告)号:US20200075213A1

    公开(公告)日:2020-03-05

    申请号:US16679472

    申请日:2019-11-11

    摘要: An improved magnetic tunnel junction with two oxide interfaces on each side of a ferromagnetic layer (FML) leads to higher PMA in the FML. The novel stack structure allows improved control during oxidation of the top oxide layer. This is achieved by the use of a FML with a multiplicity of ferromagnetic sub-layers deposited in alternating sequence with one or more non-magnetic layers. The use of non-magnetic layers each with a thickness of 0.5 to 10 Angstroms and with a high resputtering rate provides a smoother FML top surface, inhibits crystallization of the FML sub-layers, and reacts with oxygen to prevent detrimental oxidation of the adjoining ferromagnetic sub-layers. The FML can function as a free or reference layer in an MTJ. In an alternative embodiment, the non-magnetic material such as Mg, Al, Si, Ca, Sr, Ba, and B is embedded by co-deposition or doped in the FML layer.

    Protective Passivation Layer for Magnetic Tunnel Junctions

    公开(公告)号:US20200035912A1

    公开(公告)日:2020-01-30

    申请号:US16594339

    申请日:2019-10-07

    摘要: A magnetic device for magnetic random access memory (MRAM), spin torque MRAM, or spin torque oscillator technology is disclosed wherein a magnetic tunnel junction (MTJ) with a sidewall is formed between a bottom electrode and a top electrode. A passivation layer that is a single layer or multilayer comprising one of B, C, or Ge, or an alloy thereof wherein the B, C, and Ge content, respectively, is at least 10 atomic % is formed on the MTJ sidewall to protect the MTJ from reactive species during subsequent processing including deposition of a dielectric layer that electrically isolates the MTJ from adjacent MTJs, and during annealing steps around 400° C. in CMOS fabrication. The single layer is about 3 to 10 Angstroms thick and may be an oxide or nitride of B, C, or Ge. The passivation layer is preferably amorphous to prevent diffusion of reactive oxygen or nitrogen species.