Abstract:
Exemplary embodiments for an exemplary dual transmission gate and various exemplary integrated circuit layouts for the exemplary dual transmission gate are disclosed. These exemplary integrated circuit layouts represent double-height, also referred to as double rule, integrated circuit layouts. These double rule integrated circuit layouts include a first group of rows from among multiple rows of an electronic device design real estate and a second group of rows from among the multiple rows of the electronic device design real estate to accommodate a first metal layer of a semiconductor stack. The first group of rows can include a first pair of complementary metal-oxide-semiconductor field-effect (CMOS) transistors, such as a first p-type metal-oxide-semiconductor field-effect (PMOS) transistor and a first n-type metal-oxide-semiconductor field-effect (NMOS) transistor, and the second group of rows can include a second pair of CMOS transistors, such as a second PMOS transistor and a second NMOS transistor. These exemplary integrated circuit layouts disclose various configurations and arrangements of various geometric shapes that are situated within an oxide diffusion (OD) layer, a polysilicon layer, a metal diffusion (MD) layer, the first metal layer, and/or a second metal layer of a semiconductor stack. In the exemplary embodiments to follow, the various geometric shapes within the first metal layer are situated within the multiple rows of the electronic device design real estate and the various geometric shapes within the OD layer, the polysilicon layer, the MD layer, and/or the second metal layer are situated within multiple columns of the electronic device design real estate.
Abstract:
A device includes gates and a first conductive segment. A first distance is present between a first gate of the gates and the first conductive segment. A second distance is present between a second gate of the gates and the first conductive segment. The first distance is greater than the second distance.
Abstract:
Exemplary embodiments for an exemplary dual transmission gate and various exemplary integrated circuit layouts for the exemplary dual transmission gate are disclosed. These exemplary integrated circuit layouts represent double-height, also referred to as double rule, integrated circuit layouts. These double rule integrated circuit layouts include a first group of rows from among multiple rows of an electronic device design real estate and a second group of rows from among the multiple rows of the electronic device design real estate to accommodate a first metal layer of a semiconductor stack. The first group of rows can include a first pair of complementary metal-oxide-semiconductor field-effect (CMOS) transistors, such as a first p-type metal-oxide-semiconductor field-effect (PMOS) transistor and a first n-type metal-oxide-semiconductor field-effect (NMOS) transistor, and the second group of rows can include a second pair of CMOS transistors, such as a second PMOS transistor and a second NMOS transistor. These exemplary integrated circuit layouts disclose various configurations and arrangements of various geometric shapes that are situated within an oxide diffusion (OD) layer, a polysilicon layer, a metal diffusion (MD) layer, the first metal layer, and/or a second metal layer of a semiconductor stack. In the exemplary embodiments to follow, the various geometric shapes within the first metal layer are situated within the multiple rows of the electronic device design real estate and the various geometric shapes within the OD layer, the polysilicon layer, the MD layer, and/or the second metal layer are situated within multiple columns of the electronic device design real estate.
Abstract:
A layout includes a plurality of cells and at least one dummy gate electrode continuously extends across the cells. Since the dummy gate electrode is electrically conductive, the dummy gate electrode can be utilized for interconnecting the cells. That is, some signals may travel through the dummy gate electrode rather than through a metal one line or a metal two line. Therefore, an amount of metal one lines and/or metal two lines for interconnecting the cells can be reduced.
Abstract:
A semiconductor device includes a first transistor disposed over a substrate, a second transistor disposed over the first transistor, and a conductive trace. The first transistor includes first conductive segments, corresponding to drain and source terminals of the first transistor and extending in a first direction, on a first layer. The second transistor includes second conductive segments, corresponding to drain and source terminals of the second transistor and extending in the first direction, on a second layer above the first layer. The conductive trace extends on a third layer. The first to third layers are separated from each other in the first direction, and the third layer is interposed between the first and second layers. The first conductive segments, the second conductive segments, and the conductive trace overlap in a layout view.
Abstract:
An integrated circuit includes at least one first active region, at least one second active region adjacent to the first active region, and a plurality of third active regions. The first active region and the second active region are staggered. The third active regions are present adjacent to the first active region, wherein the third active regions are substantially aligned with each other.
Abstract:
An antenna cell for preventing plasma enhanced gate dielectric failures, is provided. The antenna cell design utilizes a polysilicon lead as a gate for a dummy transistor. The polysilicon lead may be one of a group of parallel, nested polysilicon lead. The dummy transistor includes the gate coupled to a substrate maintained at VSS, either directly through a metal lead or indirectly through a tie-low cell. The gate is disposed over a dielectric disposed over a continuous source/drain region in which the source and drain are tied together. A diode is formed with the semiconductor substrate within which it is formed. The source/drain region is coupled to another metal lead which may be an input pin and is coupled to active transistor gates, preventing plasma enhanced gate dielectric damage to the active transistors.